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Optical analyses of the electrochemically deposited CdO and CdGaO transparent metal oxide thin films were 

performed at 300 and 800 nm wavelength range using UV-vis spectrometer to aimed to provide an option for 

optoelectronic application fields. It is found that transmittance, absorption coefficient, extinction coefficient, refractive 

index, imaginary dielectric constant, real dielectric constant, dielectric loss and optical conductivity values of CdO 

were 82%, 3.3 x 106 m-1, 0.16, 1.26, 0.4, 1.59, 0.27 and 9.5 x 1014, respectively, while these of CdGaO were 45%, 

1.18 x 106 m-1, 0.04, 1.17, 0.1, 1.17, 0.08 and 3.3 x 1014, respectively. Additionally, the direct energy ban gap of 

CdO and CdGaO thin films were determined as 2.85 eV and 2.68 eV. 
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1. Introduction 

 

Semiconductor thin films have contributed an impact on 

development of various technological areas such as health, 

energy and environmental applications [1-4]. 

Semiconductor thin films can be synthesized in binary [5-

8], triple [9, 10] or even quaternary form [11, 12], or they 

can be obtained by oxidizing a metal [13-18]. Transparent 

conductive metal oxide (TCOs) such as SnO2, ZnO, In2O3, 

NiO, CuO, MoO3, WOx and CdO which have an importance 

among the metal oxides, are the basic materials used in flat 

panel displays, photovoltaic cells, smart windows, light 

emitting diodes and optical waveguides [19-27]. In addition, 

in recent years, triple TCOs such as Cd2SnO4, CdIn2O4, 

CdSb2O6, GaZn2O3 and CdO–In2O3–SnO2 have been 

reported for photovoltaic applications [23, 28, 29]. These 

materials have great attention due to their high conductivity 

and high optical transmittance.  

CdO thin films among the transparent metal oxides 

generally display low resistance due to natural defects of 

oxygen vacancies and cadmium transition sites. The 

conductivity of pure CdO thin films can be increased by  

 

 

adding suitable dopant with ionic radii equal to and/or 

smaller than that of the Cd lattice atoms [23]. Hence, this  

 

study was built up as comparison of optical properties of 

pure CdO and CdGaO (1:1 ratio) thin films. While there are 

several thin film synthesis methods [30-34], electrochemical 

deposition technique was preferred since it offers present 

cheap, environmentally friendly, controllably and quality 

film production [35-37]. Therefore, CdO and CdGaO thin 

films were synthesis using low molarity precursor solutions 

by electrochemical deposition technique and basic optical 

parameters were detailly examined and compared.  

 

2. Experimental 

 

CdO and CdGaO thin thin films were synthesis in ITO 

coated glass substrates at -0.7 applied potential at 70 ℃ 

during 3600 s via electrochemical deposition method has 

three-electrode configuration. In this configuration, ITO 

coated glass substrate was used a working electrode while 

reference and counter electrode were preferred as Ag/AgCl 

mailto:sitki.aktas@giresun.edu.tr


Journal of Materials and Electronic Devices 1 (2023) 12-17 

13 
and Pt. Electrolyte for CdO was made by mixing 20 ml 

Cd(NO2)3.4H2O (5 mM) and 20 ml LiCl (250 mM) whilst 

that for CdGaO 10 ml Cd(NO2)3.4H2O (5 mM) , 10 ml 

GaCl3 (5 mM) and 20 ml LiCl (250 mM) were used. 

Metrohm Autolab PGSTAT128N was employed as an 

electrochemical deposition system. Optical analyses of the 

CdO and CdGaO thin films were performed with Hach 

DR600 UV-vis spectrometry at 300 – 850 nm wavelength 

range.  

 

3. Results 

 

The determination of the optical parameters of thin films 

provides insight into their suitability for optoelectronic 

applications. Hereby, measuring the absorbance spectrum of 

the thin film enable to calculate the absorption coefficient 

(𝛼) and then energy band gap (Eg) using the following 

relations [38]; 

 

 𝛼 =
2.303 .  𝐴

𝑡
       (1) 

(𝛼ℎ𝑣) ≈ (ℎ𝑣 − 𝐸𝑔)𝑛      (2) 

 

where, A and t are absorbance and film thickness, 

respectively and ℎ𝑣 refers to the photon energy. Also, n is 

defined as ½ for direct allowed transitions.  

 

 

Figure 1: a) Absorption coefficient in respect to wavelength 

and b) (𝛼ℎ𝑣)2 versus ℎ𝑣  graphs of CdO and CdGaO thin 

films. 

 

As seen the absorption coefficient versus wavelength graphs 

of CdO and CdGaO thin film presented in Figure 1a, both 

films have wide absorption area. (𝛼) value of CdO indicates 

decreasing trend having three absorption peaks with the 

increase of the wavelength. One of them is in visible region 

(at 620 nm) with the value of 2.7 x 106 m-1 while other two 

peaks are in near-ultraviolet region with the values of 3.08 x 

106 m-1 (at 389 nm) and 3.06 x 106 m-1 (at 306 nm). Besides, 

trend of 𝛼 value for CdGaO reveals similarity with CdO but 

the absorption peak in the visible region is more pronounced.  

 

 
Figure 2: a) Transmittance (T%) and b) reflectance (R%) of 

CdO and CdGaO thin films. 

 

The peaked 𝛼 values for CdGaO can be listed as 8.7 x 105 

m-1 at 620 nm, 1.18 x 106 m-1 at 383 nm and 9.1 x 105 m-1 at 

306 nm. It is obvious that absorption coefficient of CdO thin 

film is higher than CdGaO and this can be explained by the 

fact that the atomic diameter of the Ga atom is smaller than 

Cd atom. It also is possible to find the similar examples in 

the literature [39, 40]. Energy band gap values of the CdO 

and CdGaO thin films are 2.85 eV and 2.68 eV, respectively, 

which were determined from the (𝛼ℎ𝑣)2 versus ℎ𝑣 graph as 
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shown in Figure 1b. The presence of Ga atoms reduced the 

energy band gap by 0.17 eV and this reduction may be 

related to the structural change in CdO films after Ga 

doping. Since, according to Thambidurai et. al [31], the 

structural deformation in CdO films may be caused by the 

substitution of Ga ions for substituent or interstitial 

cadmium ions in the CdO lattice. Such Ga ions will 

introduce some additional energy level in the CdO band gap 

near the valence band edge, resulting in a reduction in 

energy associated with the direct transition.  

Transmittance (T%) and reflectance (R) of the CdO and 

CdGaO thin film are determined [38-41] with the 

relationship of absorbance and shown in Figure 2. T% 

values of CdO thin film increases with the increase of the 

wavelength and the highest value is obtained at 850 nm (see 

Figure 2a). Also, while the T% value is 45% at 700 nm 

which is the upper limit of the visible region, it is 40% at 

400 nm. In the CdGaO thin film, on the other hand, %T 

values exhibited a fluctuating change and decreased to their 

minimum values in high absorption regions. The highest 

T% value is measured as 82% in the visible region and this 

value is expected for conductive transparent metal oxides. 

Since the presence of Ga atoms reduces absorption, the %T 

values are higher in the CdGaO thin film compared to CdO. 

This behaviour in the especially in absorption region is in 

agreement with the literature [42]. Besides, R% values of 

each thin film decrease with the increase of the wavelength 

as shown in Figure 2b. The highest R% values of CdO and 

CdGaO thin film can be given as 6.5% at 302 nm and 4.2% 

at 382 nm, respectively.  

 

 
Figure 3: a) Extinction coefficient (k) and b) refractive 

index (n) of CdO and CdGaO thin films. 

 

Extinction coefficient (k) and refractive index(n) are 

calculated using the relation with absorption coefficient [41] 

and variation of both values in respect to wavelength are 

presented in Figure 3. The k values of both thin films 

increased with increasing wavelength as shown in Figure 3a 

and the highest k value of the CdO thin film is 0.16, while 

the that of the CdGaO is 0.044. Generally, CdO thin film has 

4 times higher k values than CdGaO and this is directly 

related to the absorption capacities of the films. These 

obtained k values are higher than CdO and ZnO based thin 

films [43, 44]. The variation of the n values of the CdO and 

CdGaO thin films against the wavelength is the opposite of 

the behaviour of k, and the n values decreases with the 

increase of the wavelength as given in Figure 3b. The highest 

n value in CdO thin film is around 1.26, while that of CdGaO 

is 1.17, and these values are lower compared to metal oxide 

thin films doped with different metals [30, 45], but higher 

than some hybrid thin films [46]. 
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Figure 4: a) Imaginary dielectric constant (𝜀𝑖) and b) real 

dielectric constant (𝜀𝑟) of CdO and CdGaO thin films 

 

Imaginary dielectric constant (𝜀𝑖) and real dielectric 

constant (𝜀𝑟) which are equal to 2𝑛𝑘 and 𝑛2 − 𝑘2, 

respectively, are demonstrated in Figure 4. The variation of 

𝜀𝑖 values both thin films rise with the increase of wavelength 

similar to the k values. The highest and lowest k values of 

CdO are 0.4 and 0.2 while these for CdGaO are 0.04 and 

0.1, respectively. 𝜀𝑟 values of both thin films presented in 

Figure 4b drop similar to n values, with increasing 

wavelength. Whilst the highest and the lowest 𝜀𝑟 values of 

CdO thin film are found to be 1.59 and 1.48, these of CdGaO 

are 1.37 and 1.28, respectively. It is seen that 𝜀𝑖 and 𝜀𝑟 

values of the CdO thin film are higher than the values of the 

CdGaO at all wavelengths. In addition, 𝜀𝑟 values are higher 

than the 𝜀𝑖 values in both thin films.  

 

 
 

Figure 5: a) Optical conductivity and a) dielectric loss of 

of CdO and CdGaO thin films. 

 

Optical conductivity (𝜎) is calculated with the formula of 

𝜎 = (𝛼𝑛𝑐) 4𝜋⁄ , where 𝑐 is the speed of the light and its 

variation in respect to wavelength are illustrated in Figure 

5a. It is seen that 𝜎 values of CdO decreases with the rise of 

wavelength while the variation of 𝜎 values of CdGao are 

fluctuation. The highest σ value in CdO thin film is 9.5 x1014 

at 302 nm where the absorption is maximum, while that of 

CdGaO is 3.3 x 1014 at 382 nm and it is also seen that at all 

wavelengths, the σ values of the CdO thin film are higher 

than the CdGaO. The dielectric loss (𝜀𝑖 𝜀𝑟⁄ ) values of both 

thin films increase with the increase of wavelength as 

illustrated in Figure 5b. Dielectric loss value of the CdO thin 

film is 0.27 at 850 nm where the loss is the highest while that 

of CdGaO is 0.08. It is obvious that the in the CdO thin film 

is greater than the loss in the CdGaO thin film.  

4. Conclusion 

 

CdO and CdGaO thin films were deposited on conductive 

ITO coated glass substrates using low molarity solutions by 

electrochemical method and some basic optical parameters 

were investigated and compared. As a result of these 

analyses, it is observed that the CdGaO thin film has a lower 

energy band gap than the pure CdO. In addition, it is also 

obtained that the presence of Ga atoms significantly 
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increases the transmittance values of CdO at all 

wavelengths. Consequently, it is considered that both thin 

films have low absorption capacities and are particularly 

suitable for use in solar cells as a component that transmits 

light without absorbing it. 
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