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1. Introduction 

 
Mathematics has recently gained importance in studies 

related to optics. Geometric approaches and discussions 

about Rytov's law, which have a great place in optics and 

electromagnetic theory, were first included in ([1],[2],[3]) 

publications. With the Berry’s phase, which is also known 

as the geometric phase and emerged after the study of the 

topological phase, studies on geometric approaches have 

begun to increase. For instance, it was first discussed by 

Ross et al. that the motion of a particle could be studied 

using the whole theory of geometric approximations. (See 

[5],[6]). With this development, subjects such as curves 

and curvature, motion, and trajectories, which are 

important in terms of geometry, have been discussed by 

many authors for electromagnetic theory. (See 

[7],[8],[9],[10],[11]). In ([12],[13]), in the light of these 

studies, the authors examined the movement of polarized 

light and its orbit in the riemman space, which is the 

fundamental space. 

 

 

 

 

however, in ([15]), the theory of homotetic motion was 

studied together with quaternions to study magnetic and 

electromagnetic trajectories. Thanks to all these studies, it 

was possible to examine this geometric phase in other 

geometric structures. for example, it has been studied in 

hyperbolic plane in ([19]). Adachi furthered these studies 

and investigated their counterparts in complex projective 

space, ([17],[18]). Studies including geometrical 

approaches of magnetic and electromagnetic theory have 

been carried out in other important space as well. ([21]). 

Along with all the studies done until that time, the most 

fundamental publications in which magnetic and 

electromagnetic trajectories were investigated are 

([22],[23],[16]). Then, in ([20],[24],[25]), the authors gave 

characterizations of the magnetic curves in 3-dimensional 

Euclidean 3-space  𝐸3  and Lorentzian 3-space  𝐸1
3 . 

 

2.  Fundamental backgrounds 

 

 Let 𝛾 be non-null curve lying on the non-null surface 𝑀 

and {𝑇, 𝑄, 𝑁} be Darboux frame on the surface 𝑀 in 

Minkowski 3-space 𝑅3
1 with standard metric of  𝑅3

1  ; 

 

⟨, ⟩ = −𝑑𝑥1
2 + 𝑑𝑥2

2 + 𝑑𝑥3
2, 
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where ( 𝑥1, 𝑥2, 𝑥3)  is a rectangular coordinate system of  

𝑅3
1.  

 

T is unit tangent vector of the curve; N is the unit normal 

vector of surface 𝑀 and 𝑄 is a unit vector given by  

𝑄 = 𝑇 ∧𝐿 𝑁.  
 

The derivative of the Darboux frame is given by; 

 

(
𝑇′

𝑄′

𝑁′

) = (

0 𝜀2𝑘𝑔 𝜀3𝑘𝑛
−𝜀1𝑘𝑔 0 𝜀3𝜏𝑔
−𝜀1𝑘𝑛 −𝜀2𝜏𝑔 0

)(
𝑇
𝑄
𝑁
)  (1) 

 

where; 

 

⟨𝑇, 𝑇⟩𝐿 = 𝜀1   ⟨𝑄, 𝑄⟩𝐿 = 𝜀2   ⟨𝑁, 𝑁⟩𝐿 = 𝜀3. 

 

Also; 

 

𝑇 ∧𝐿 𝑄 = 𝜀3𝑁     𝑄 ∧𝐿 𝑁 = 𝜀1𝑇    𝑁 ∧𝐿 𝑇 = 𝜀2𝑄 . 

 

Respectively kg, kn and τg are the geodesic curvature, 

normal curvature, and geodesic torsion in Minkowski 3-

space. 

The magnetic field is a vector field and mathematically 

corresponds to the vector field div=0 in 3D Riemannian 

manifolds. The force acting on the magnetic field is called 

the Lorentz force is defined by the skew symmetric 

operator ϕ and is given as follows 

 

𝛷(𝑋) = 𝑉 × 𝑋,     (2) 

 

The trajectory formed as a result of the particle moving 

with this force acting on the particle under the influence of 

the magnetic field is called the magnetic trajectory. The 

magnetic curves of the magnetic vector field V provide the 

following equation  

 
𝛷(𝑡) = 𝑉 × 𝑡 = 𝛻𝑡𝑡,    (3) 

 

([22],[23]). 

 

3.  A Geometric Phase Model of The Polarized 

Light Wave in The Optical Fiber Through Darboux 

Frame 

 

An optical fiber can be defined by a non-null curve in 

Semi-Riemannian manifold. Considering β is a space 

curve. The direction of the state of the polarized light is 

defined via the derivative of E. Thus, along with the optical 

fiber the direction of E can be written as the linear 

combination of the Darboux frame fields in Minkowski 3-

space. Then we can write the following 

 

𝑑𝐸

𝑑𝑠
= 𝜆1𝑇(𝑠) + 𝜆2𝑌(𝑠) + 𝜆3𝑍(𝑠),   (4) 

 

where λi, i=1,2,3 are differentiable functions. 

Next, the direction of the state of the polarized light was 

examined the angle made by the electric field with the 

fields of the frame in three different cases according to the 

right angle. 

 

3.1.  A geometric phase model of the polarized 

light wave in the optical fiber through Darboux 

frame 𝑬 ⊥ 𝑻  

 

Case 1: Let we suppose that E make a right angle with T. 

Thus, we have; 

 

⟨𝐸, 𝑇⟩ = 0.       (5) 

 

If we take the derivative of (5) and take into account the (4) 

and (1) equations, make the necessary calculations, and 

assume there is no mechanism lossin the optic fiber 

because of absorption, we have  ⟨𝐸, 𝐸⟩ = 𝑘 , where k is 

constant, we can write; 

 

𝐸 = 𝜀2⟨𝐸, 𝑄⟩𝑄 + 𝜀3⟨𝐸, 𝑁⟩𝑁.     (6) 

 

When necessary calculations are made, we can get 

 
𝑑𝐸

𝑑𝑡
= (−𝑘𝑔𝜀1𝜀2⟨𝐸, 𝑄⟩ − 𝑘𝑛𝜀1𝜀3⟨𝐸, 𝑁⟩)𝑇 + 𝜆⟨𝐸, 𝑁⟩𝑄 −

𝜆⟨𝐸, 𝑄⟩𝑁.          (7) 

 

The λ part of Eq (7) shows the rotation around the principal 

tangent vector T. If we assume that T is parallel transported 

(i.e., λ=0), then we find; 

 

𝑑𝐸

𝑑𝑡
= (−𝑘𝑔𝜀1𝜀2⟨𝐸, 𝑄⟩ − 𝑘𝑛𝜀1𝜀3⟨𝐸, 𝑁⟩)𝑇. 

 

Generally, we can also write; 

 

𝐸 = 𝜀2⟨𝐸, 𝑄⟩𝑄 + 𝜀3⟨𝐸, 𝑁⟩𝑁. 

 

Then take the derivative of last equation and using Eq(1), 

we get; 

 

𝑑𝐸

𝑑𝑡
= (−𝑘𝑔𝜀1𝜀2⟨𝐸, 𝑄⟩ − 𝑘𝑛𝜀1𝜀3⟨𝐸, 𝑁⟩)𝑇 

+(𝜀2⟨𝐸, 𝑄⟩
′ − 𝜀2𝜀3𝜏𝑔⟨𝐸, 𝑁⟩)𝑄 

+(𝜀3⟨𝐸, 𝑁⟩
′ + 𝜀2𝜀3𝜏𝑔⟨𝐸, 𝑄⟩)𝑁 

 

Finally, we can write the matrix form; 

 

(
⟨𝐸, 𝑄⟩′

⟨𝐸, 𝑁⟩′
) = (

0 𝜀3𝜏𝑔
−𝜀2𝜏𝑔 0

) (
⟨𝐸, 𝑄⟩
⟨𝐸, 𝑁⟩

). 
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Moreover, since  ⟨𝐸, 𝐸⟩ = 𝑘 , k is a constant and 

considering the spherical coordinates, we can calculate the 

following ; 

 

i) If E spacelike and Q timelike, N spacelike, we can get, 

 

𝐸 = 𝑠𝑖𝑛ℎ 𝜃 𝑄 + 𝑐𝑜𝑠ℎ 𝜃 𝑁. 

 

Then derivating of the last equation, and using Eq (1) and 

combining the last equation, we can write; 

 

𝑑𝐸

𝑑𝑡
= 𝑐𝑜𝑠ℎ 𝜃 𝑄 + 𝑠𝑖𝑛ℎ 𝜃 (−𝜀1𝑘𝑔𝑇 + 𝜀3𝜏𝑔𝑁) 

+𝑠𝑖𝑛ℎ 𝜃 𝑁 + 𝑐𝑜𝑠ℎ 𝜃 (−𝜀1𝑘𝑛𝑇 − 𝜀2𝜏𝑔𝑄). 

 

We assume that Q timelike and N spacelike; 

 

𝑑𝐸

𝑑𝑡
= (−𝜀1𝑘𝑔⟨𝐸, 𝑄⟩ − 𝜀1𝑘𝑛⟨𝐸, 𝑁⟩)𝑇 + (

𝑑𝜃

𝑑𝑡
+ 𝜏𝑔)(𝐸 × 𝑇) 

 

If E spacelike vector and Q spacelike, N timelike vector, 

we can write 

 

𝐸 = 𝑠𝑖𝑛ℎ 𝜃 𝑁 + 𝑐𝑜𝑠ℎ 𝜃 𝑄. 

 

Then if we calculate at the same way, we give; 

 

𝑑𝐸

𝑑𝑡
= (−𝜀1𝑘𝑛⟨𝐸, 𝑄⟩ − 𝜀1𝑘𝑔⟨𝐸, 𝑁⟩)𝑇 + (

𝑑𝜃

𝑑𝑡
+ 𝜏𝑔)⟨𝐸, 𝑁⟩𝑁 

+(
𝑑𝜃

𝑑𝑡
+ 𝜏𝑔)⟨𝐸, 𝑄⟩𝑄. 

 

So, we can write for the two cases; 

 

𝑑𝜃

𝑑𝑡
= −𝜏𝑔. 

 

Then, from Fermi-Walker parallelism, we can find that the 

optical fiber is an ET – Rytov curve that satisfy ⟨𝐸, 𝑇⟩ = 0. 

As a result, the direction of the state of polarized light 

changes in the vector field T. Thus, in the optical fiber, the 

polarization vector is obtained as follows; 

 

𝐸 = −𝑠𝑖𝑛ℎ(∫ 𝜏𝑔)𝑄 − 𝑐𝑜𝑠ℎ(∫ 𝜏𝑔)𝑁. 

 

Same way we suppose that E timelike vector, again, we 

need to examine two situations, these are:  

Q timelike vector, N spacelike vector or N timelike, Q 

spacelike vector. For the first case, we can write; 

 

𝐸 = 𝑐𝑜𝑠ℎ 𝜃 𝑄 + 𝑠𝑖𝑛ℎ 𝜃 𝑁. 
 

Then derivating of the last equation, and using Eq (1) and 

combining the last equation, we can write; 

𝑑𝐸

𝑑𝑡
= (−𝜀1𝑘𝑔⟨𝐸, 𝑁⟩ − 𝜀1𝑘𝑛⟨𝐸, 𝑄⟩)𝑇 + (

𝑑𝜃

𝑑𝑡
− 𝜀2𝜏𝑔)⟨𝐸, 𝑄⟩𝑄 

+(
𝑑𝜃

𝑑𝑡
+ 𝜀3𝜏𝑔)⟨𝐸, 𝑁⟩𝑁. 

 

For Q timelike vector, N spacelike vector; 

 

𝑑𝐸

𝑑𝑡
= (−𝜀1𝑘𝑔⟨𝐸, 𝑁⟩ − 𝜀1𝑘𝑛⟨𝐸, 𝑄⟩)𝑇 + (

𝑑𝜃

𝑑𝑡
+ 𝜏𝑔)(𝐸

× 𝑉1) 

 

If E timelike vector and Q spacelike, N timelike vector, we 

can write 

 

𝐸 = 𝑠𝑖𝑛ℎ 𝜃 𝑄 + 𝑐𝑜𝑠ℎ 𝜃 𝑁 

 

Then if we calculate at the same way, we give; 

 

𝑑𝐸

𝑑𝑡
= (−𝜀1𝑘𝑛⟨𝐸, 𝑁⟩ − 𝜀1𝑘𝑔⟨𝐸, 𝑄⟩)𝑇 + (

𝑑𝜃

𝑑𝑡
+ 𝜏𝑔)⟨𝐸, 𝑁⟩𝑄 

+(
𝑑𝜃

𝑑𝑡
+ 𝜏𝑔)⟨𝐸, 𝑄⟩𝑁. 

 

So, we can write for the two cases; in the optical fiber, we 

must take  
𝑑𝜃

𝑑𝑡
= −𝜏𝑔.  Thus, we can say that the polarization 

vector  𝐸  moves the parallel transport along the direction 

of T(t). With Fermi Walker's parallel transport law, we can 

express this situation as follows 

 

𝑑𝐸𝐹𝑊

𝑑𝑡
=
𝑑𝐸

𝑑𝑠
± ⟨𝐸, 𝑇⟩

𝑑𝑇

𝑑𝑡
+ ⟨𝐸,

𝑑𝑇

𝑑𝑡
⟩𝑇 

 

Then from Fermi-Walker parallelism, we see that the 

optical fiber is an ET – Rytov curve according to  

⟨𝐸, 𝑇(𝑠)⟩ = 0 . As a result, the direction of the state of 

polarized light changes in the vector field T(s). 

 

3.2.  A geometric phase model of the polarized 
light wave in the optical fiber through Darboux 

frame E ⊥ 𝑸  
 

Case 2: Let we suppose that E make a right angle with Q. 

Thus, we have; 

 

⟨𝐸, 𝑄⟩ = 0     (8) 

 

If we take the derivative of (8) and take into account the (4) 

and (1) equations, make the necessary calculations, and 

assume there is no mechanism lossin the optic fiber 

because of absorption, we have  ⟨𝐸, 𝐸⟩ = 𝑘 , where k is 

constant, we can write; 

 

𝐸 = 𝜀1⟨𝐸, 𝑇⟩𝑇 + 𝜀3⟨𝐸, 𝑁⟩𝑁   (9) 
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When necessary calculations are made, we can get; 

 

𝑑𝐸

𝑑𝑡
= 𝜆⟨𝐸, 𝑁⟩𝑇 + (𝑘𝑔𝜀1𝜀2⟨𝐸, 𝑇⟩ − 𝜏𝑔𝜀2𝜀3⟨𝐸,𝑁⟩)𝑄 

−𝜆⟨𝐸, 𝑇⟩𝑁     (10) 

 

The λ part of Eq (12) demonstrates the rotation around the 

principal vector Q. If we suppose that Q is parallel 

transported (i.e. λ=0), then we find; 

 

𝑑𝐸

𝑑𝑡
= (𝑘𝑔𝜀1𝜀2⟨𝐸, 𝑇⟩ − 𝜏𝑔𝜀2𝜀3⟨𝐸, 𝑁⟩)𝑄. 

 

Generally, we can also write; 

 

𝐸 = 𝜀1⟨𝐸, 𝑇⟩𝑇 + 𝜀3⟨𝐸, 𝑁⟩𝑁. 

 

Then take the derivative of last equation and using Eq(1), 

we get; 

 

𝑑𝐸

𝑑𝑡
= (𝑘𝑔𝜀1𝜀2⟨𝐸, 𝑇⟩ − 𝜏𝑔𝜀2𝜀3⟨𝐸, 𝑁⟩)𝑄 

+(𝜀1⟨𝐸, 𝑇⟩
′ − 𝜀1𝜀3𝑘𝑛⟨𝐸, 𝑁⟩)𝑇 

+(𝜀3⟨𝐸, 𝑁⟩
′ + 𝜀1𝜀3𝑘𝑛⟨𝐸, 𝑇⟩)𝑁 

 

Finally, we can write the matrix form; 

 

(
⟨𝐸, 𝑇⟩′

⟨𝐸, 𝑁⟩′
) = (

0 𝜀3𝑘𝑛
−𝜀1𝑘𝑛 0

) (
⟨𝐸, 𝑇⟩
⟨𝐸, 𝑁⟩

). 

 

Moreover, since  ⟨𝐸, 𝐸⟩ = 𝑘 , k is a constant and using the 

spherical coordinates, we can calcuate as following; 

If E spacelike and T timelike, N spacelike, we can get; 

 

𝐸 = 𝑠𝑖𝑛ℎ 𝜃 𝑇 + 𝑐𝑜𝑠ℎ 𝜃 𝑁. 

 

Then derivating of the last equation, and using Eq (1) and 

combining the last equation, we can write; 

 

𝑑𝐸

𝑑𝑡
= (

𝑑𝜃

𝑑𝑡
− 𝜀1𝑘𝑛)⟨𝐸, 𝑁⟩𝑇 + (

𝑑𝜃

𝑑𝑡
+ 𝜀3𝑘𝑛)⟨𝐸, 𝑇⟩𝑁 

+(𝜀2𝑘𝑔⟨𝐸, 𝑇⟩ − 𝜀2𝜏𝑔⟨𝐸, 𝑁⟩)𝑄 

 

We assume that T timelike and N spacelike, so we write; 

 

𝑑𝐸

𝑑𝑡
= (𝜀2𝑘𝑔⟨𝐸, 𝑇⟩ − 𝜀2𝜏𝑔⟨𝐸, 𝑁⟩)𝑄 + (

𝑑𝜃

𝑑𝑡
+ 𝑘𝑛)(𝐸 × 𝑄) 

 

If E spacelike vector and T spacelike, N timelike vector, we 

can write 

 

𝐸 = 𝑠𝑖𝑛ℎ 𝜃 𝑁 + 𝑐𝑜𝑠ℎ 𝜃 𝑇. 

 

Then if we calculate at the same way, we give; 

 

𝑑𝐸

𝑑𝑡
= (−𝜀2𝜏𝑔⟨𝐸, 𝑇⟩ + 𝜀2𝑘𝑔⟨𝐸, 𝑁⟩)𝑄 + (

𝑑𝜃

𝑑𝑡
+ 𝑘𝑛)⟨𝐸, 𝑇⟩𝑇 

+(
𝑑𝜃

𝑑𝑡
+ 𝑘𝑛)⟨𝐸, 𝑁⟩𝑁. 

 

Same way we suppose that E timelike vector, again, we 

need to examine two situations, these are: T timelike 

vector, N spacelike vector or N timelike, T spacelike vector. 

For the first case, we can write 

 

𝐸 = 𝑐𝑜𝑠ℎ 𝜃 𝑇 + 𝑠𝑖𝑛ℎ 𝜃 𝑁 

 

Then derivating of the last equation, and using Eq (1) and 

combining the last equation, we can write; For T timelike 

vector, N spacelike vector, we get; 

 

𝑑𝐸

𝑑𝑡
= (⟨𝐸, 𝑁⟩𝜀2𝑘𝑔 − 𝜀2𝜏𝑔⟨𝐸, 𝑇⟩)𝑄 + (

𝑑𝜃

𝑑𝑡
+ 𝑘𝑛)(𝐸 × 𝑄). 

 

If E timelike vector and T spacelike, N timelike vector, we 

can write 

 

𝐸 = 𝑠𝑖𝑛ℎ 𝜃 𝑇 + 𝑐𝑜𝑠ℎ 𝜃 𝑁 

 

Then if we calculate at the same way, we give; 

 

𝑑𝐸

𝑑𝑡
= (𝜀2𝑘𝑔⟨𝐸, 𝑇⟩ − 𝜀2𝜏𝑔⟨𝐸, 𝑁⟩)𝑄 + (

𝑑𝜃

𝑑𝑡
+ 𝑘𝑛)⟨𝐸, 𝑁⟩𝑇 

+(
𝑑𝜃

𝑑𝑡
+ 𝑘𝑛)⟨𝐸, 𝑇⟩𝑁. 

 

So, we can write for the two cases; in the optical fiber, we 

must take  
𝑑𝜃

𝑑𝑡
= −𝑘𝑛.   Thus, we can show that the 

polarization vector  𝐸  moves the parallel transport along 

the direction of Q(t). With Fermi Walker's parallel 

transport law, we can express this situation as follows 

 

𝑑𝐸𝐹𝑊

𝑑𝑡
=
𝑑𝐸

𝑑𝑠
± ⟨𝐸, 𝑄⟩

𝑑𝑄

𝑑𝑡
+ ⟨𝐸,

𝑑𝑄

𝑑𝑡
⟩ 𝑄 

 

Then, from Fermi--Walker parallelism, we can say that the 

optical fiber is an  𝐸𝑄 − 𝑅𝑦𝑡𝑜𝑣  curve with the condition 

that  ⟨𝐸, 𝑄⟩ = 0 . As a result, the direction of the state of 

polarized light changes in the vector field Q. In this way, E 

is calculated as following; 

 

𝐸 = −𝑠𝑖𝑛ℎ(∫𝑘𝑛)𝑇 − 𝑐𝑜𝑠ℎ(∫ 𝑘𝑛)𝑁 

 

3.3 A geometric phase model of the polarized light 

wave in the optical fiber through Darboux frame     

E ⊥ 𝑵  
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Case 3: Let we suppose that E make a right angle with N. 

Thus, we have; 

 

⟨𝐸, 𝑁⟩ = 0     (11) 

 

If we take the derivative of (11) and take into account the 

(4) and (1) equations, make the necessary calculations, and 

assume there is no mechanism lossin the optic fiber due to 

absorption, we have  ⟨𝐸, 𝐸⟩ = 𝑘, where 𝑘 is constant, we 

can write; 

 

𝐸 = 𝜀1⟨𝐸, 𝑇⟩𝑇 + 𝜀2⟨𝐸, 𝑄⟩𝑄.   (12) 

 

When necessary calculations are made, we can get; 

 
𝑑𝐸

𝑑𝑡
= 𝜆⟨𝐸, 𝑄⟩𝑇 − 𝜆⟨𝐸, 𝑇⟩𝑄 + (𝜀1𝜀3𝑘𝑛⟨𝐸, 𝑇⟩ +

𝜏𝑔𝜀2𝜀3⟨𝐸, 𝑄⟩)𝑁     (13) 

 

The λ part of Eq (15) shows the rotation around the 

principal normal vector  𝑁  . If we suppose that  𝑁   is 

parallel transported (i.e., λ=0), then we find; 

 

𝑑𝐸

𝑑𝑡
= (𝜀1𝜀3𝑘𝑛⟨𝐸, 𝑇⟩ + 𝜏𝑔𝜀2𝜀3⟨𝐸, 𝑄⟩)𝑁. 

 

Generally, we can also write; 

 

𝐸 = 𝜀1⟨𝐸, 𝑇⟩𝑇 + 𝜀2⟨𝐸, 𝑄⟩𝑄. 

 

Then take the derivative of last equation and considering 

Eq (1), we get; 

 

𝑑𝐸

𝑑𝑡
= (𝜀1⟨𝐸, 𝑇⟩

′ − 𝑘𝑔𝜀1𝜀2⟨𝐸, 𝑄⟩)𝑇 

+(𝜀1𝜀3𝑘𝑛⟨𝐸, 𝑇⟩ + 𝜏𝑔𝜀2𝜀3⟨𝐸, 𝑄⟩)𝑁 

+(𝜀2⟨𝐸, 𝑄⟩
′ + 𝜀2𝜀1𝑘𝑔⟨𝐸, 𝑇⟩)𝑄. 

 

Finally, we can write the matrix form; 

 

(
⟨𝐸, 𝑇⟩′

⟨𝐸, 𝑄⟩′
) = (

0 𝜀2𝑘𝑔
−𝜀1𝑘𝑔 0

) (
⟨𝐸, 𝑇⟩
⟨𝐸, 𝑄⟩

), 

 

On the other hand, since  ⟨𝐸, 𝐸⟩ = 𝑘 ,  𝑘  is a constant and 

using the spherical coordinates, we can write the following; 

If E spacelike and Q timelike, T spacelike, we can write; 

 

𝐸 = 𝑠𝑖𝑛ℎ 𝜃 𝑄 + 𝑐𝑜𝑠ℎ 𝜃 𝑇 

 

Then derivating of the last equation, and using Eq(1) and 

combining the last equation, we can write; 

 

𝑑𝐸

𝑑𝑡
= (

𝑑𝜃

𝑑𝑡
− 𝜀1𝑘𝑔)⟨𝐸, 𝑄⟩𝑇 + (𝜀3𝑘𝑛⟨𝐸, 𝑇⟩ + 𝜀3𝜏𝑔⟨𝐸, 𝑄⟩)𝑁 

+(
𝑑𝜃

𝑑𝑡
+ 𝜀2𝑘𝑔)⟨𝐸, 𝑇⟩𝑄. 

 

We assume that Q timelike and T spacelike; 

 

𝑑𝐸

𝑑𝑡
= (𝜀3𝑘𝑛⟨𝐸, 𝑇⟩ + 𝜀3𝜏𝑔⟨𝐸, 𝑄⟩)𝑁 + (

𝑑𝜃

𝑑𝑡
− 𝑘𝑔)(𝐸 × 𝑁) 

 

If E spacelike vector and Q spacelike, T timelike vector, we 

can write 

 

𝐸 = 𝑠𝑖𝑛ℎ 𝜃 𝑇 + 𝑐𝑜𝑠ℎ 𝜃 𝑄. 

 

Then if we calculate at the same way, we give; 

 

𝑑𝐸

𝑑𝑡
= (𝜀3𝑘𝑛⟨𝐸, 𝑄⟩ + 𝜀3𝜏𝑔⟨𝐸, 𝑇⟩)𝑁 + (

𝑑𝜃

𝑑𝑡
+ 𝑘𝑔)⟨𝐸, 𝑇⟩𝑇 

+(
𝑑𝜃

𝑑𝑡
+ 𝑘𝑔)⟨𝐸, 𝑄⟩𝑄. 

 

Same way we suppose that E timelike vector, again, we 

need to examine two situations, these are: 

Q timelike vector, T spacelike vector or T timelike, Q 

spacelike vector. For the first case, we can write; 

 

𝐸 = 𝑐𝑜𝑠ℎ 𝜃 𝑄 + 𝑠𝑖𝑛ℎ 𝜃 𝑇. 

 

Then derivating of the last equation, and using Eq (1) and 

combining the last equation, we can write; 

For Q timelike vector, T spacelike vector; 

 

𝑑𝐸

𝑑𝑡
= (𝜀3𝜏𝑔⟨𝐸, 𝑇⟩ + 𝜀3𝑘𝑛⟨𝐸, 𝑄⟩)𝑁 + (

𝑑𝜃

𝑑𝑡
− 𝑘𝑔)(𝐸 × 𝑁) 

 

If E timelike vector and Q spacelike, T timelike vector, we 

can write 

 

𝐸 = 𝑠𝑖𝑛ℎ 𝜃 𝑄 + 𝑐𝑜𝑠ℎ 𝜃 𝑇 

 

Then if we calculate at the same way, we give; 

 

𝑑𝐸

𝑑𝑡
= (𝜀3𝜏𝑔⟨𝐸, 𝑄⟩ + 𝜀3𝑘𝑛⟨𝐸, 𝑇⟩)𝑁 + (

𝑑𝜃

𝑑𝑡
+ 𝑘𝑔)⟨𝐸, 𝑄⟩𝑇 

+(
𝑑𝜃

𝑑𝑡
+ 𝑘𝑔)⟨𝐸, 𝑇⟩𝑄. 

So we can write for the two cases; in the optical fiber, we 

must take  
𝑑𝜃

𝑑𝑡
= −𝑘𝑔.   Thus, we can say that the 

polarization vector  𝐸  moves the parallel transport along 

the direction of  𝑁(𝑡)  . With Fermi Walker's parallel 

transport law, we can express this situation as follows 

 

𝑑𝐸𝐹𝑊

𝑑𝑡
=
𝑑𝐸

𝑑𝑠
± ⟨𝐸, 𝑁⟩

𝑑𝑁

𝑑𝑡
+ ⟨𝐸,

𝑑𝑁

𝑑𝑡
⟩𝑁. 
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Then, from Fermi--Walker parallelism, we see that the 

optical fiber is an  𝐸𝑁 − 𝑅𝑦𝑡𝑜𝑣   curve according to  

⟨𝐸, 𝑁⟩ = 0  . As a result, the direction of the state of 

polarized light changes in the vector field N. In this way, 

the polarization vector is obtained as following 

 

𝐸 = −𝑠𝑖𝑛ℎ(∫𝑘𝑔)𝑄 − 𝑐𝑜𝑠ℎ(∫𝑘𝑔)𝑇 

 

4.  Example 

 

Let  𝛾  is a non-null spacelike curve in Minkowski 3-space 

defined as; 

 

𝛾(𝑡) = (
4

5
𝑐𝑜𝑠( (5𝑡),

1

3
𝑠𝑖𝑛( 8𝑡) −

4

3
𝑠𝑖𝑛( 2𝑡),

1

3
𝑐𝑜𝑠( 8𝑡)

+
4

3
𝑐𝑜𝑠( 2𝑡)) 

 

Fig. 1. Rytov curve (blue) and polarization vector E (red) 

in the case of E ⊥ T. 
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