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In this study, we examined the geometric phase related to Darboux frame and analyzed its relation to the motion of

the polarized light wave and electromagnetic trajectories in an optical fiber in Minkowski 3-space. The study is

presented as follows: The first section is the part that contains the only developments on the subject. In the second

section, the theoretical information used in the publication is given. The third section investigates the geometric

phase of the polarization plane of a light wave traveling in an optical fiber through Darboux frame in Minkowski 3-

space. The fourth section shows some examples using the Maple program.
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1. Introduction

Mathematics has recently gained importance in studies
related to optics. Geometric approaches and discussions
about Rytov's law, which have a great place in optics and
electromagnetic theory, were first included in ([1],[2],[3])
publications. With the Berry’s phase, which is also known
as the geometric phase and emerged after the study of the
topological phase, studies on geometric approaches have
begun to increase. For instance, it was first discussed by
Ross et al. that the motion of a particle could be studied
using the whole theory of geometric approximations. (See
[5],[6]). With this development, subjects such as curves
and curvature, motion, and trajectories, which are
important in terms of geometry, have been discussed by
many authors for electromagnetic theory. (See
[71LI8L,[91,[101,[11]). In ([12],[13]), in the light of these
studies, the authors examined the movement of polarized
light and its orbit in the riemman space, which is the
fundamental space.

however, in ([15]), the theory of homotetic motion was
studied together with quaternions to study magnetic and
electromagnetic trajectories. Thanks to all these studies, it
was possible to examine this geometric phase in other
geometric structures. for example, it has been studied in
hyperbolic plane in ([19]). Adachi furthered these studies
and investigated their counterparts in complex projective
space, ([17],[18]). Studies including geometrical
approaches of magnetic and electromagnetic theory have
been carried out in other important space as well. ([21]).
Along with all the studies done until that time, the most
fundamental publications in which magnetic and
electromagnetic trajectories were investigated are
([221,[23],[16]). Then, in ([20],[24],[25]), the authors gave
characterizations of the magnetic curves in 3-dimensional
Euclidean 3-space E3 and Lorentzian 3-space E3 .

2. Fundamental backgrounds

Let y be non-null curve lying on the non-null surface M
and {T,Q,N} be Darboux frame on the surface M in
Minkowski 3-space R} with standard metric of R} ;

()= —dx? +dx2 + dx2,
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where ( Xx1,x,,Xx3) is a rectangular coordinate system of
RL.

T is unit tangent vector of the curve; N is the unit normal
vector of surface M and @ is a unit vector given by

Q=TA,N.

The derivative of the Darboux frame is given by;

T’ 0 Ezkg €3kn T
(Q'>= —&1kg 0 &3, <Q> (1)

N' —&kn, —&74 0 N
where;
(T.T),=¢& (Q,Q), =¢& (N,N), = é&.
Also;

TALQ=eN QA N=gT NA,T=¢e0Q.

Respectively kg, ko and 71, are the geodesic curvature,
normal curvature, and geodesic torsion in Minkowski 3-
space.

The magnetic field is a vector field and mathematically
corresponds to the vector field div=0 in 3D Riemannian
manifolds. The force acting on the magnetic field is called
the Lorentz force is defined by the skew symmetric
operator ¢ and is given as follows

DX) =V xX, )

The trajectory formed as a result of the particle moving
with this force acting on the particle under the influence of
the magnetic field is called the magnetic trajectory. The
magnetic curves of the magnetic vector field V provide the
following equation

D)=V xt="Ut 3)
([221,[23D).

3. A Geometric Phase Model of The Polarized
Light Wave in The Optical Fiber Through Darboux
Frame

An optical fiber can be defined by a non-null curve in
Semi-Riemannian manifold. Considering f is a space
curve. The direction of the state of the polarized light is
defined via the derivative of E. Thus, along with the optical
fiber the direction of E can be written as the linear
combination of the Darboux frame fields in Minkowski 3-
space. Then we can write the following

55
= WaT(5) + A,Y (5) + A2(s), )

where 4;, i=1,2,3 are differentiable functions.

Next, the direction of the state of the polarized light was
examined the angle made by the electric field with the
fields of the frame in three different cases according to the
right angle.

3.1. A geometric phase model of the polarized
light wave in the optical fiber through Darboux
frameE L T

Case 1: Let we suppose that £ make a right angle with 7.
Thus, we have;

(E,T)=0. (5)

If we take the derivative of (5) and take into account the (4)
and (1) equations, make the necessary calculations, and
assume there is no mechanism lossin the optic fiber
because of absorption, we have (E,E) =k , where k is
constant, we can write;

E = &,(E,Q)Q + &3(E,N)N. (6)

When necessary calculations are made, we can get

e = (—kgerea(E, Q) — kngres(E, NNT + AE,N)Q —

AE, Q)N. (7

The A part of Eq (7) shows the rotation around the principal
tangent vector 7. If we assume that 7 is parallel transported
(i.e., A=0), then we find,

dE
dat = (_kg5152<E' Q) — knper&3(E, N)T.

Generally, we can also write;
E = &,(E,Q)Q + &;(E,N)N.

Then take the derivative of last equation and using Eq(1),
we get;

dE
2 = Ckgerea(E, Q) — kneres(E, N)T

+(&2(E, Q) — 5253Tg<E:N>)Q
+(&3(E, N)' + &,6374(E, Q))N

Finally, we can write the matrix form;

() = (e, 0°) e}
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Moreover, since (E,E)=k , k is a constant and
considering the spherical coordinates, we can calculate the
following ;

i) If E spacelike and Q timelike, N spacelike, we can get,
E =sinh8Q + cosh6 N.

Then derivating of the last equation, and using Eq (1) and
combining the last equation, we can write;

dE
T cosh 0 Q + sinh 6 (—& k4T + €5374N)

+sinh @ N + cosh 0 (—&1k,T — £,74Q).
We assume that O timelike and N spacelike;

dE _ k(E k. (E,N)T a6 EXT
or = (Ce1kg(E, Q) = exkn(E, NDT + (G + ) (E X T)

If E spacelike vector and Q spacelike, N timelike vector,
we can write

E =sinh@ N + cosh 6 Q.

Then if we calculate at the same way, we give;

dE do
@ (—&1kn(E, Q) — &1ky(E,N)T + (E + 74,)(E, N)N

do
G +To(E Q)0

So, we can write for the two cases;

do
E = —Tg.

Then, from Fermi-Walker parallelism, we can find that the
optical fiber is an Er— Rytov curve that satisfy (E,T) = 0.
As a result, the direction of the state of polarized light
changes in the vector field 7. Thus, in the optical fiber, the
polarization vector is obtained as follows;

E = —sinh(f‘rg)Q - cosh(f‘rg)N.

Same way we suppose that E timelike vector, again, we
need to examine two situations, these are:

Q timelike vector, N spacelike vector or N timelike, Q
spacelike vector. For the first case, we can write;

E =coshf8Q + sinh6 N.

56
Then derivating of the last equation, and using Eq (1) and
combining the last equation, we can write;

dE dg
25 = (Ceakg(E,N) = xkn(E,QIT + (5
— &75)(E, Q)0

do
+(E+ £3Tg)(E, N)N.

For Q timelike vector, N spacelike vector;
dE dé
T = (Feakg(E,N) = &1k (E, QNT + (- + 19) (B
x Vi)

If E timelike vector and Q spacelike, N timelike vector, we
can write

E =sinh8Q + cosh6 N
Then if we calculate at the same way, we give;

dE deo
Frin (=&1kn(E,N) — &1kg(E, Q)T + (E + 7g)(E,N)Q

+ a6 + 1, )(E, Q)N
—+ 1 , .
So, we can write for the two cases; in the optical fiber, we
must take % = —174. Thus, we can say that the polarization

vector E moves the parallel transport along the direction
of T(t). With Fermi Walker's parallel transport law, we can
express this situation as follows

dﬁw_dE+ETdT+EdTT
dt _ds—(')m ('m>

Then from Fermi-Walker parallelism, we see that the
optical fiber is an Er — Rytov curve according to
(E,T(s)) =0 . As a result, the direction of the state of
polarized light changes in the vector field 7(s).

3.2. A geometric phase model of the polarized
light wave in the optical fiber through Darboux
frame E L Q

Case 2: Let we suppose that £ make a right angle with Q.
Thus, we have;

(E,Q)=0 ®)

If we take the derivative of (8) and take into account the (4)
and (1) equations, make the necessary calculations, and
assume there is no mechanism lossin the optic fiber
because of absorption, we have (E,E) =k , where £ is
constant, we can write;

E = &(E, T)T + &5(E, N)N 9)
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When necessary calculations are made, we can get;

‘é—f = ME,N)T + (kye,16,(E, T) — 148,3(E,N))Q
—ME,T)N (10)

The A part of Eq (12) demonstrates the rotation around the
principal vector Q. If we suppose that Q is parallel
transported (i.e. A=0), then we find;

dE

a = (kgelez(E, T)— 198253(E,N))Q.

Generally, we can also write;
E = &(E,T)T + &3(E,N)N.

Then take the derivative of last equation and using Eq(1),
we get;

dE
dat = (kgglgz(E' T)— ngzgs(E;N»Q

+(e(E,TY — &165k (E,N)T
+(e5(E,N) + &,&3k,(E, T))N

Finally, we can write the matrix form;
((E,T)’) _( 0 eakn>(<E.T>>
(E,NY) ~ \—gk, 0 (E,N))

Moreover, since (E,E) = k , k is a constant and using the
spherical coordinates, we can calcuate as following;
If E spacelike and T timelike, N spacelike, we can get;

E =sinhO@T + coshO N.

Then derivating of the last equation, and using Eq (1) and
combining the last equation, we can write;

€ _ a0 k)(E,N)T + d9+ k)(E,T)N
o0 = (g~ Sk )EN)T + (g + sk )(E, )

+(e2kg(E, T) — £,74(E, N))Q

We assume that 7 timelike and N spacelike, so we write;

dE _ ds
o = Ekg(ET) = &7, (E.N)Q + (- + k) (E X Q)

If E spacelike vector and T spacelike, N timelike vector, we
can write

E =sinhO N + cosh6T.

Then if we calculate at the same way, we give;

57

dE do
= = (&g (E,T) + £kg(E,N)Q + (- + kn)(E, T)T

+d0+k E,N)N
(G + kn)(E NN,

Same way we suppose that E timelike vector, again, we
need to examine two situations, these are: 7T timelike
vector, N spacelike vector or N timelike, 7 spacelike vector.
For the first case, we can write

E =cosh@T+sinh@ N

Then derivating of the last equation, and using Eq (1) and
combining the last equation, we can write; For T timelike
vector, N spacelike vector, we get;

dE

do
o = (EN)eky = 574(ETHQ + (- + en) (E X Q).

If E timelike vector and T spacelike, N timelike vector, we
can write

E =sinhOT + cosh6 N

Then if we calculate at the same way, we give;

dE do
= = (e2kg(E,T) = &74(E. NDQ + (5 + kn)(E, N)T

+d9+k E,T)N
(dt n)(: ) "

So, we can write for the two cases; in the optical fiber, we

de
must take e —k,. Thus, we can show that the

polarization vector E moves the parallel transport along
the direction of Q). With Fermi Walker's parallel
transport law, we can express this situation as follows

dEFW_dE_I_(E dQ <EdQ>
dt ds " dt ’ Q

Then, from Fermi--Walker parallelism, we can say that the
optical fiber is an Ey; — Rytov curve with the condition
that (E,Q) = 0. As a result, the direction of the state of
polarized light changes in the vector field Q. In this way, E
is calculated as following;

E = —sinh(J’ k)T — cosh(J’ k)N

3.3 A geometric phase model of the polarized light
wave in the optical fiber through Darboux frame
ELN
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Case 3: Let we suppose that £ make a right angle with N.
Thus, we have;

(E,N)=0 (11)

If we take the derivative of (11) and take into account the
(4) and (1) equations, make the necessary calculations, and
assume there is no mechanism lossin the optic fiber due to
absorption, we have (E,E) = k, where k is constant, we
can write;

E = &(E, T)T + &(E, Q)Q. (12)

When necessary calculations are made, we can get;

& = ME, Q)T — ME,T)Q + (£ (E, T) +
Tg€2€3(E, Q)N (13)

The A part of Eq (15) shows the rotation around the
principal normal vector N . If we suppose that N is
parallel transported (i.e., A=0), then we find;

dE
T (e183kn(E, T) + t48,65(E, Q))N.
Generally, we can also write;

E = &,(E, T)T + &(E, Q)Q.

Then take the derivative of last equation and considering
Eq (1), we get;

E
2 = ElETY —kgeiex(E, QDT
+(e1&3kn(E, T) + 146,65(E, Q)N

+(e2(E, Q) + &261kg(E, THQ.

Finally, we can write the matrix form;

(Eo)=(cer, ) ()

On the other hand, since (E,E) =k, k is a constant and
using the spherical coordinates, we can write the following;
If E spacelike and Q timelike, T spacelike, we can write;

E =sinh6Q + cosh8T

Then derivating of the last equation, and using Eq(1) and
combining the last equation, we can write;

dE

do
FTi (7 — €1kg)(E, Q)T + (e3kn(E, T) + £374(E, Q)N

dt

58
de
+(E + &,k )(E, T)Q.

We assume that Q timelike and T spacelike;

dE do
= = (eskn(E, T) + &574(E, QN + (- = kg)(E X N)

If E spacelike vector and Q spacelike, T timelike vector, we
can write

E =sinh8T + cosh 6 Q.

Then if we calculate at the same way, we give;

dE do
E - (83k‘n(E1 Q) + €3Tg(El T))N + (E + kg)<E: T>T
do i WE
+C+ k)E, Q0.

Same way we suppose that E timelike vector, again, we
need to examine two situations, these are:

Q timelike vector, T spacelike vector or T timelike, Q
spacelike vector. For the first case, we can write;

E =cosh0Q +sinh0T.

Then derivating of the last equation, and using Eq (1) and
combining the last equation, we can write;
For Q timelike vector, T spacelike vector;

dE do
= = (esTg(E,T) + e3kn(E, QN + (- = k) (E X N)

If E timelike vector and Q spacelike, T timelike vector, we
can write

E =sinh0Q +cosh6T

Then if we calculate at the same way, we give;

dE do
a5 = (EsTg(E, Q) + E3kn(E,THN + (- + kg )(E, Q)T

do
+(5-+ kg)(E, T)Q.

dt
So we can write for the two cases; in the optical fiber, we
de
must take o —kg.  Thus, we can say that the

polarization vector E moves the parallel transport along
the direction of N(t) . With Fermi Walker's parallel
transport law, we can express this situation as follows

dEFW_dE+ENdN EdN
a5 T EN G Eg

IN.
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Then, from Fermi--Walker parallelism, we see that the
optical fiber is an Ey — Rytov curve according to
(E,N)=0 . As a result, the direction of the state of
polarized light changes in the vector field N. In this way,
the polarization vector is obtained as following

E= —sinh(f kg)Q — cosh(fkg)T

4. Example

Let y is a non-null spacelike curve in Minkowski 3-space
defined as;

4 1 4 1
y(t) = (E cos((St),gsin(St) — gsin(Zt),gcos(St)

4 2
+ 3 cos(2t))

Fig. 1. Rytov curve (blue) and polarization vector E (red)
in the case of E L T.
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