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In this study, we examined the geometric phase according to Framed curves' frame and researched its relationship
to the action of the polarized light wave and electromagnetic trajectories in an optical fiber in Minkowski 3-space.
This study consists of four parts. The sections are; The first section is the part where the studies done so far on the
subject are given. The second section is the part where the theoretical information used in the publication is
included. The third section investigates the geometric phase of the polarization plane of a light wave traveling in an

optical fiber through Framed curves' frame in Minkowski 3-space for nullcone fronts of spacelike framed curves.

The fourth section shows an example using the Maple program.
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1. Introduction

In ([11,[2],[3]) basic principles and valuable geometrical
descriptions are given which is relation with geometric
phase of particle that comes to magnetic field and under
this force called Lorentz force. The field, which was
initially concerned only with the topological phase, became
geometrically interesting with Berry’s phase. Ross and
Kugler et al. searched the point particle which moves along
the optic fiber (see [5],[6]). Other ways, they were
researched geometric properties and the result of this phase
(see [71,[81,[91,[10],[11]). In ([12],[13]), the authors show
the geometric properties of the Berry's phase through the
space curve along an optical fiber in a 3dimensional
Riemannian manifold, so researchers have defined a space
curve as an optic fiber.

Then, in ([15]), researchers studied the motion which is
made by the Lorentz force with another perspective.
Comtet researched the motion of a charged particle within
a constant and static magnetic field in the hyperbolic plane

and defined this motion in this space. ([19]). Adachi
examined the motion of the charged particle in different
space that is complex space ([17],[18]). Cabrerizo et al.
defined the new magnetic field in different geometric space
([21]). Along with all the studies done until that time, the
most fundamental publications in which magnetic and
electromagnetic trajectories were investigated are
([221,[23],[16]). Finally, in ([20],[24],[25]), the authors
present different characterizations of the magnetic
trajectories.

2. Fundamental backgrounds

Let y be a spacelike curve. Then, the map
y,V,V,) : 1>RIxV

is called a spacelike framed curve if

(ylﬂvl) = Or (V',Vz) = 0, vVt € I,
where;

V={(V1,V;) € S x H§ | (V,V,) = 0}
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or
V ={(V1,V,) € H§ x S | (V3,V,) = 0}.

Moreover, the curve y is called the base curve of the
spacelike framed curve. Then p = V; AV, is defined, that
be a spacelike vector field. On the other hand y' =

a(tu(t),

a(t) is a smooth function. It is simple to comprehend that
the base curve vy is singular point ¢ if and only if a(?)=0.
It is denoted;

8(t) = sign(V1 (1)) = (V1,V1),

and the frenet-serret formulas of the frame constructed for
such a curve are as indicated in the matrix form below;

44 0 L L\ /v,
V; | = L 0 l3 <V2>. (1)
I -6, 6L 0/ \u

Where

W, Vo) =L (Vi) =1l (Vz,u) = L5
([26)).

So, i, I, and I3 are the curvature of the spacelike framed
curve.
The magnetic field is a vector field and mathematically

corresponds to the vector field div=0 in 3D Riemannian
manifolds. The force acting on the magnetic field is called
the Lorentz force is defined by the skew symmetric
operator ¢ and is given as follows

X)) =V xX, (2)

The trajectory formed as a result of the particle moving
with this force acting on the particle under the influence of
the magnetic field is called the magnetic trajectory. The
magnetic curves of the magnetic vector field V' provide the
following equation

B =V xt="Tt 3)
([221,[23D).

3. A geometric phase model of the polarized light
wave in the optical fiber through Null cone fronts

An optical fiber can be defined via a spacelike framed
curve in semi-Riemannian manifold. Considering f§ is a
space curve. The direction of the state of the polarized light
is defined by the way of the electric field £. Thus, along
with the optical fiber the direction of £ can be written as
the linear combination of the Framed curve's frame fields
in Minkowski 3-space. Then we can write the following
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L =MV + AV + Agp (4)
where 4;, i = 1,2,3 are differentiable functions.

Next, the direction of the state of the polarized light was
examined the angle made by the electric field with the
fields of the frame in three different cases according to the
right angle.

3.1. A Berry phase model of the polarized light
wave in the optical fiber through Null cone fronts
ELV,

Case 1: In this case we suppose that £ make a right angle
with V. So, we can write this expression;

(E,V1)=0 )

If we take the derivative of (5) and take into account the (4)
and (1) equations, make the necessary calculations, and
supposing there is no mechanism loss in the optical fiber
because of absorption, we have (E,E) = k, kisa constant,
we can write;

E =(E, V)V, + (E, pu (6)
When necessary calculations are made, we can get
dE
a5 = COMLIE, V) = S(OLAE, uh)Vy + (KE, k))V,
— ME, Vy)u
The A part of Eq(7) shows the rotation around the principal

tangent vector V; . If we assume that V; is parallel
transported (i.e. A = 0), then we find;

d
2 = (=8(O)(E, Vo) = () (E, m)Vi. (7)
Generally, we can also write;
E= (E! VZ)VZ + (E!#)#

Then take the derivative of last equation and using Eq(1),
we get;

E
T = W(EV2) = LE(OLE, u)Vs
+({(E, V2)' + 8(OL(E, u)V,

+{E, 1)’ + L(E, V2 )u

Finally we can write the matrix form;
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(-0 e

If we write E with the help of spherical coordinates, we can
get as following;
If E spacelike, V 2 timelike,we can get,

E =sinh0V, + cosh0pu

Then derivating of the last equation, and using Eq(1) and
combining the last equation, we can write;

dE
T cosh OV, +sinh 6 (LLV; + L3p)

+sinh 60 p + cosh 8 (=6(t)1,V, + 6(t)15V,).
We assume that V 2 timelike, we get;

dE de
a5 = WEVz) = S(OLAE, Vi + (G + L)(E X V).

If E timelike vector and V 2 timelike vector, we can write;
E =cosh8V, +sinh6pu

Then if we calculate at the same way, and using Eq(1) and
the last equation, we can write;

dE
Fri sinh 8V, + cosh 6 (LLV; + L)

+cosh @ p+ sinh 8 (=6(t)1,V; + 6(t)151,).

So, we calculate respect to cross product of framed curve's
frame, we write;

dE do

2t = Wl ) = S(OLAE, VDV + (o + B)(E X V).

So we can write for the two cases; in the optical fiber, we
de
must take prl —l;. Thus, we can say that E moves the

parallel transport along the direction of V; (t) . With Fermi
Walker's parallel transport law, we can express this
situation as follows;

dEFW  dE

+(E,V, dV1+E
dt ds_('l)dt {

" dt

Wi

Then from Fermi-Walker parallelism, we see that the
optical fiber is an Ey, — Rytov curve with the condition
that (E,V;(t)) = 0. Consequently, E changes in the vector
field V;(¢t).
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3.2. A Berry phase model of the polarized light
wave in the optical fiber through Null cone fronts
ELV,

Case 2: In this case we suppose that £ make a right angle
with V,. So, we can write this expression;

(E,V2) =0 ®)

If we take the derivative of (8) and take into account the (4)
and (1) equations, we can write;

E = §(t)(E, Vi)Vy + (E, mu )
When necessary calculations are made, we can get

Z—f = ME, m)Vy + (=L (E, V1) = I3(E, u)V, — ME, Vy)p.
(10)

The A part of Eq(10) demonstrates the rotation around the
principal tangent vector V, . If we suppose that V, is
parallel transported (i.e. A = 0 ), then we find,

dE _
dar (=U(E, V1) = L(E, u)Vs.

In general, we can write it as;

Then take the derivative of last equation and using Eq(1),
we get;

dE
2 = GO(E V) = LE(EE, u)Vy
TG OULE, Vi) + 8(O)(E, 1)V,

+{E, 1) + (O L(E, Vi)
Finally we can write the matrix form;
(ERr) 2 (L0, ) (&)
On the other hand, since (E,E) =k, k is a constant and

using the spherical coordinates, we can write the following;
If E spacelike vector, V; timelike vector, we can write;

E =sinh0V; + cosh p.

Then derivating of the last equation, and using Eq(1) and
combining the last equation, we can write;
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dE
P cosh 0V, + sinh 6 (L,V, + l,u)
+sinh 0 p + cosh 8 (=5(t),V, + 5(t)151,).

We assume that V timelike, we get;

dE de
77 = WE V) + 8O, u)Vy + (o + LIE X V)

If E time like vector and V, timelike vector, we can write;
E =cosh0V; +sinh6u

Then if we calculate at the same way, and using Eq(1) and
the last equation, we can write;

dE
T sinh 8V, + cosh 8 (L,V, + L,u)

+cosh@u+sinh8 (=5(t)L,V; +5()15V5)

So we can write for the two cases; in the optical fiber, we
do .

must take pr l,. Thus, we can say that the polarization

vector E moves the parallel transport along the direction

of V,(t) . Also, this motion can be given through the
Fermi-Walker transportation law as follows;

dEFW_dE+EV dV2+EdV2
dt _ds_('Z)dt <'dt

W2

Then from Fermi-Walker parallelism, we see that the
optical fiber is an Ey, — Rytov curve with the condition
that (E,V,(t)) = 0 . Consequently, the direction of the
state of polarized light changes in the vector field V,(t).

3.3 A Berry phase model of the polarized light
wave in the optical fiber through Null cone fronts
ELu

Case 3: In this case we suppose that £ make a right angle
with p. So, we can write this expression;

(E,u) =0 (11)

If we take the derivative of (8) and take into account the (4)
and (1) equations, we can write;

E = 8(O)(E, Vi)Vy +(E, V)V, 12)

When necessary calculations are made, we can get

L = (ME Va))Vi — ME, V)V, + (8O LAE, V,) —

dc

S(OL(E, Vo2 Du (13)
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The A part of Eq(13) demonstrates the rotation around the
principal tangent vector u . If we suppose that 7 is parallel
transported (i.e. 4 = 0), then we find;

dE
a5 = OOLEVL) = (OL(E, V2)u

Generally, we can also write;
E = 8(O)(E, Vi)Vy +(E, V)V,

Then take the derivative of last equation and using Eq(1),
we get;

dE

P (6(E, V1) + L(E, Vo)W
+(EOU(E, V1) +(E, V2))V,
+(G (O L(E, Vi) + {E, Vo ))u

Finally, we can write the matrix form;

() = (s 0 ) )

On the other hand, since (E,E) =k, k is a constant and
using the spherical coordinates, we can write the following;
IfE, V 2 are respectively spacelike and timelike vector,
we get;

E =sinh 0V, + cosh0V;

We assume that V 2 timelike, we get;

dE do

—— = ((E, Vo) + LE, ViDu + (- + L(E X p)
dt dt

If E timelike vector and V 2 timelike vector, we can write;

E = cosh 0V, +sinh 0V,

Then if we calculate at the same way, and use Eq(1) and
the last equation, we can write;

dE
Frie sinh 8V, + cosh 0 (LLV; + L31)
+cosh 8V, +sinh 8 (LLV, + i)

So, we calculate respect to cross product of framed curve's
frame, we write;

dE do
a5 = GAE Vo) + LE Vihu + (G + L(E X )
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So, we can write for the two cases; in the optical fiber, we
e o
must take prl l,. Thus, we can say that the polarization

vector E moves the parallel transport along the direction
of u(t) . Also, this motion can be given through the Fermi-
Walker transportation law as follows;

dEFW_dE+E dy+Edu
ar - a5 T E g TE gk

Then from Fermi-Walker parallelism, we see that the
optical fiber is an E, — Rytov curve with the condition that
(E, u(t)) = 0. Consequently, the direction of the state of
polarized light changes in the vector field u(t).

4. Example

Let y be a spacelike curve in R3, defined by;

1.1 .1 1
— (42 _$2 _+4 _$2
r(O) = G L5t gt 457

4
1
Vy(t) = 0,62 +1,-1
' \/(t2+1)2((t2+1)2+1)( crbeh
1 2 2 2
Vlt) = s (@ H 1 4 L1
+1)

Fig. 1. Behavior of the polarization E (red) along the
optical fiber for the case E 1L V,
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