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1. Introduction 

 

In ([1],[2],[3]) basic principles and valuable geometrical 

descriptions are given which is relation with geometric 

phase of particle that comes to magnetic field and under 

this force called Lorentz force. The field, which was 

initially concerned only with the topological phase, became 

geometrically interesting with Berry’s phase.  Ross and 

Kugler et al. searched the point particle which moves along 

the optic fiber (see [5],[6]). Other ways, they were 

researched geometric properties and the result of this phase 

(see [7],[8],[9],[10],[11]). In ([12],[13]), the authors show 

the geometric properties of the Berry's phase through the 

space curve along an optical fiber in a 3dimensional 

Riemannian manifold, so researchers have defined a space 

curve as an optic fiber. 

Then, in ([15]), researchers studied the motion which is 

made by the Lorentz force with another perspective. 

Comtet researched the motion of a charged particle within 

a constant and static magnetic field in the hyperbolic plane  

 

 

and defined this motion in this space. ([19]). Adachi 

examined the motion of the charged particle in different 

space that is complex space ([17],[18]). Cabrerizo et al. 

defined the new magnetic field in different geometric space 

([21]). Along with all the studies done until that time, the 

most fundamental publications in which magnetic and 

electromagnetic trajectories were investigated are 

([22],[23],[16]). Finally, in ([20],[24],[25]), the authors 

present different characterizations of the magnetic 

trajectories. 

 

2.  Fundamental backgrounds 

 

Let γ be a spacelike curve. Then, the map 

 

(𝛾, 𝑉1, 𝑉2)  :   𝐼 → 𝑅3
1 × 𝛻 

 

is called a spacelike framed curve if 

 

⟨𝛾′, 𝑉1⟩ = 0,     ⟨𝛾′, 𝑉2⟩ = 0,    ∀𝑡 ∈ 𝐼, 
where; 

 

𝛻 = {(𝑉1, 𝑉2) ∈ 𝑆1
2 × 𝐻0

2 | ⟨𝑉1, 𝑉2⟩ = 0} 
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or 

𝛻 = {(𝑉1, 𝑉2) ∈ 𝐻0
2 × 𝑆1

2 | ⟨𝑉1, 𝑉2⟩ = 0}. 
 

Moreover, the curve γ is called the base curve of the 

spacelike framed curve. Then  𝜇 = 𝑉1 ∧ 𝑉2  is defined, that 

be a spacelike vector field. On the other hand  𝛾′ =

𝑎(𝑡)𝜇(𝑡), 

 

a(t) is a smooth function. It is simple to comprehend that 

the base curve γ is singular point t0 if and only if a(t)=0. 

It is denoted; 

 

𝛿(𝑡) = 𝑠𝑖𝑔𝑛(𝑉1(𝑡)) = ⟨𝑉1, 𝑉1⟩, 

 

and the frenet-serret formulas of the frame constructed for 

such a curve are as indicated in the matrix form below; 

 

(

𝑉1
′

𝑉2
′

𝜇′
) = (

0 𝑙1 𝑙2
𝑙1 0 𝑙3

−𝛿(𝑡)𝑙2 𝛿(𝑡)𝑙3 0
)(

𝑉1
𝑉2
𝜇
),  (1) 

 

Where 

 

⟨𝑉1
′, 𝑉2⟩ = 𝑙1   ⟨𝑉1

′, 𝜇⟩ = 𝑙2   ⟨𝑉2
′, 𝜇⟩ = 𝑙3. 

 

([26]). 

 

So, l1, I2 and I3 are the curvature of the spacelike framed 

curve.  

The magnetic field is a vector field and mathematically 

corresponds to the vector field div=0 in 3D Riemannian 

manifolds. The force acting on the magnetic field is called 

the Lorentz force is defined by the skew symmetric 

operator ϕ and is given as follows 

 

𝛷(𝑋) = 𝑉 × 𝑋,     (2) 

 

The trajectory formed as a result of the particle moving 

with this force acting on the particle under the influence of 

the magnetic field is called the magnetic trajectory. The 

magnetic curves of the magnetic vector field V provide the 

following equation  

 

𝛷(𝑡) = 𝑉 × 𝑡 = 𝛻𝑡𝑡,      (3) 

 

([22],[23]). 

 

3.  A geometric phase model of the polarized light 

wave in the optical fiber through Null cone fronts 

 

An optical fiber can be defined via a spacelike framed 

curve in semi-Riemannian manifold. Considering β is a 

space curve. The direction of the state of the polarized light 

is defined by the way of the electric field E. Thus, along 

with the optical fiber the direction of E can be written as 

the linear combination of the Framed curve's frame fields 

in Minkowski 3-space. Then we can write the following 

 
𝑑𝐸

𝑑𝑡
= 𝜆1𝑉1 + 𝜆2𝑉2 + 𝜆3𝜇    (4) 

 

where  𝜆𝑖 ,  𝑖 = 1,2,3  are differentiable functions. 

Next, the direction of the state of the polarized light was 

examined the angle made by the electric field with the 

fields of the frame in three different cases according to the 

right angle. 

 

3.1.  A Berry phase model of the polarized light 

wave in the optical fiber through Null cone fronts 

E ⊥ 𝑽𝟏 

 

Case 1: In this case we suppose that E make a right angle 

with V1. So, we can write this expression; 

 

⟨𝐸, 𝑉1⟩ = 0     (5) 

 

If we take the derivative of (5) and take into account the (4) 

and (1) equations, make the necessary calculations, and 

supposing  there is no mechanism loss in the optical fiber 

because of absorption, we have  ⟨𝐸, 𝐸⟩ = 𝑘,   k is a constant, 

we can write; 

 

𝐸 = ⟨𝐸, 𝑉2⟩𝑉2 + ⟨𝐸, 𝜇⟩𝜇    (6) 

 

When necessary calculations are made, we can get 

 

𝑑𝐸

𝑑𝑡
= (−𝛿(𝑡)𝑙1⟨𝐸, 𝑉2⟩ − 𝛿(𝑡)𝑙2⟨𝐸, 𝜇⟩)𝑉1 + (𝜆⟨𝐸, 𝜇⟩)𝑉2

− 𝜆⟨𝐸, 𝑉2⟩𝜇 

 

The  𝜆  part of Eq(7) shows the rotation around the principal 

tangent vector  𝑉1 . If we assume that  𝑉1  is parallel 

transported (i.e.  𝜆 = 0 ), then we find; 

 
𝑑𝐸

𝑑𝑡
= (−𝛿(𝑡)𝑙1⟨𝐸, 𝑉2⟩ − 𝛿(𝑡)𝑙2⟨𝐸, 𝜇⟩)𝑉1.  (7) 

 

Generally, we can also write; 

 

𝐸 = ⟨𝐸, 𝑉2⟩𝑉2 + ⟨𝐸, 𝜇⟩𝜇. 

 

Then take the derivative of last equation and using Eq(1), 

we get; 

 

𝑑𝐸

𝑑𝑡
= (𝑙1⟨𝐸, 𝑉2⟩ − 𝑙2𝛿(𝑡)⟨𝐸, 𝜇⟩)𝑉1 

+(⟨𝐸, 𝑉2⟩
′ + 𝛿(𝑡)𝑙3⟨𝐸, 𝜇⟩)𝑉2 

+(⟨𝐸, 𝜇⟩′ + 𝑙3⟨𝐸, 𝑉2⟩)𝜇 

 

Finally we can write the matrix form; 
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(
⟨𝐸, 𝑉2⟩

′

⟨𝐸, 𝜇⟩′
) = (

0 −𝑙3𝛿(𝑡)
−𝑙3 0

) (
⟨𝐸, 𝑉2⟩
⟨𝐸, 𝜇⟩

) 

 

If we write E with the help of spherical coordinates, we can 

get as following; 

 If E spacelike, V 2  timelike,we can get, 

 

𝐸 = 𝑠𝑖𝑛ℎ 𝜃 𝑉2 + 𝑐𝑜𝑠ℎ 𝜃 𝜇 

 

Then derivating of the last equation, and using Eq(1) and 

combining the last equation, we can write; 

 

𝑑𝐸

𝑑𝑡
= 𝑐𝑜𝑠ℎ 𝜃 𝑉2 + 𝑠𝑖𝑛ℎ 𝜃 (𝑙1𝑉1 + 𝑙3𝜇) 

+ 𝑠𝑖𝑛ℎ 𝜃 𝜇 + 𝑐𝑜𝑠ℎ 𝜃 (−𝛿(𝑡)𝑙2𝑉1 + 𝛿(𝑡)𝑙3𝑉2). 

 

We assume that V 2  timelike, we get; 

 

𝑑𝐸

𝑑𝑡
= (𝑙1⟨𝐸, 𝑉2⟩ − 𝛿(𝑡)𝑙2⟨𝐸, 𝜇⟩)𝑉1 + (

𝑑𝜃

𝑑𝑡
+ 𝑙3)(𝐸 × 𝑉1). 

 

If E timelike vector and V 2  timelike vector, we can write; 

 

𝐸 = 𝑐𝑜𝑠ℎ 𝜃 𝑉2 + 𝑠𝑖𝑛ℎ 𝜃 𝜇 

 

Then if we calculate at the same way, and using Eq(1) and 

the last equation, we can write; 

 

𝑑𝐸

𝑑𝑡
= 𝑠𝑖𝑛ℎ 𝜃 𝑉2 + 𝑐𝑜𝑠ℎ 𝜃 (𝑙1𝑉1 + 𝑙3𝜇) 

+ 𝑐𝑜𝑠ℎ 𝜃 𝜇 + 𝑠𝑖𝑛ℎ 𝜃 (−𝛿(𝑡)𝑙2𝑉1 + 𝛿(𝑡)𝑙3𝑉2). 

 

So, we calculate respect to cross product of framed curve's 

frame, we write; 

 

𝑑𝐸

𝑑𝑡
= (𝑙1⟨𝐸, 𝜇⟩ − 𝛿(𝑡)𝑙2⟨𝐸, 𝑉2⟩)𝑉1 + (

𝑑𝜃

𝑑𝑡
+ 𝑙3)(𝐸 × 𝑉1). 

 

So we can write for the two cases; in the optical fiber, we 

must take  
𝑑𝜃

𝑑𝑡
= −𝑙3.  Thus, we can say that   𝐸  moves the 

parallel transport along the direction of  𝑉1(𝑡) . With Fermi 

Walker's parallel transport law, we can express this 

situation as follows; 

𝑑𝐸𝐹𝑊

𝑑𝑡
=
𝑑𝐸

𝑑𝑠
± ⟨𝐸, 𝑉1⟩

𝑑𝑉1
𝑑𝑡

+ ⟨𝐸,
𝑑𝑉1
𝑑𝑡

⟩𝑉1 

 

Then from Fermi-Walker parallelism, we see that the 

optical fiber is an  𝐸𝑉1 − Rytov curve with the condition 

that  ⟨𝐸, 𝑉1(𝑡)⟩ = 0 . Consequently, E changes in the vector 

field  𝑉1(𝑡).  

 

3.2.  A Berry phase model of the polarized light 
wave in the optical fiber through Null cone fronts 

E ⊥ 𝑽𝟐 
 

Case 2:  In this case we suppose that E make a right angle 

with 𝑉2. So, we can write this expression; 

 

⟨𝐸, 𝑉2⟩ = 0     (8) 

 

If we take the derivative of (8) and take into account the (4) 

and (1) equations, we can write; 

 

𝐸 = 𝛿(𝑡)⟨𝐸, 𝑉1⟩𝑉1 + ⟨𝐸, 𝜇⟩𝜇   (9) 

 

When necessary calculations are made, we can get 

 
𝑑𝐸

𝑑𝑡
= 𝜆⟨𝐸, 𝜇⟩𝑉1 + (−𝑙1⟨𝐸, 𝑉1⟩ − 𝑙3⟨𝐸, 𝜇⟩)𝑉2 − 𝜆⟨𝐸, 𝑉1⟩𝜇. 

(10) 

 

The  𝜆  part of Eq(10) demonstrates the rotation around the 

principal tangent vector  𝑉2 . If we suppose that  𝑉2  is 

parallel transported (i.e.  𝜆 = 0 ), then we find; 

 

𝑑𝐸

𝑑𝑡
= (−𝑙1⟨𝐸, 𝑉1⟩ − 𝑙3⟨𝐸, 𝜇⟩)𝑉2. 

 

 

In general, we can write it as; 

 

𝐸 = 𝛿(𝑡)⟨𝐸, 𝑉1⟩𝑉1 + ⟨𝐸, 𝜇⟩𝜇. 

 

Then take the derivative of last equation and using Eq(1), 

we get; 

 

𝑑𝐸

𝑑𝑡
= (𝛿(𝑡)⟨𝐸, 𝑉1⟩

′ − 𝑙2𝛿(𝑡)⟨𝐸, 𝜇⟩)𝑉1 

+(𝛿(𝑡)𝑙1⟨𝐸, 𝑉1⟩ + 𝛿(𝑡)𝑙3⟨𝐸, 𝜇⟩)𝑉2 

+(⟨𝐸, 𝜇⟩′ + 𝛿(𝑡)𝑙2⟨𝐸, 𝑉1⟩)𝜇 

 

Finally we can write the matrix form; 

(
⟨𝐸, 𝑉1⟩

′

⟨𝐸, 𝜇⟩′
) = (

0 𝑙2
−𝛿(𝑡)𝑙2 0

) (
⟨𝐸, 𝑉1⟩
⟨𝐸, 𝜇⟩

). 

 

On the other hand, since  ⟨𝐸, 𝐸⟩ = 𝑘 ,  𝑘  is a constant and 

using the spherical coordinates, we can write the following; 

If E spacelike vector, V1 timelike vector, we can write; 

 

𝐸 = 𝑠𝑖𝑛ℎ 𝜃 𝑉1 + 𝑐𝑜𝑠ℎ 𝜃 𝜇. 

 

Then derivating of the last equation, and using Eq(1) and 

combining the last equation, we can write; 
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𝑑𝐸

𝑑𝑡
= 𝑐𝑜𝑠ℎ 𝜃 𝑉1 + 𝑠𝑖𝑛ℎ 𝜃 (𝑙1𝑉2 + 𝑙2𝜇) 

+ 𝑠𝑖𝑛ℎ 𝜃 𝜇 + 𝑐𝑜𝑠ℎ 𝜃 (−𝛿(𝑡)𝑙2𝑉1 + 𝛿(𝑡)𝑙3𝑉2). 

 

We assume that V1 timelike, we get; 

 

𝑑𝐸

𝑑𝑡
= (𝑙1⟨𝐸, 𝑉1⟩ + 𝛿(𝑡)𝑙3⟨𝐸, 𝜇⟩)𝑉2 + (

𝑑𝜃

𝑑𝑡
+ 𝑙2)(𝐸 × 𝑉2) 

 

If E time like vector and V1 timelike vector, we can write; 

 

𝐸 = 𝑐𝑜𝑠ℎ 𝜃 𝑉1 + 𝑠𝑖𝑛ℎ 𝜃 𝜇 

 

Then if we calculate at the same way, and using Eq(1) and 

the last equation, we can write; 

 

𝑑𝐸

𝑑𝑡
= 𝑠𝑖𝑛ℎ 𝜃 𝑉1 + 𝑐𝑜𝑠ℎ 𝜃 (𝑙1𝑉2 + 𝑙2𝜇) 

+ 𝑐𝑜𝑠ℎ 𝜃 𝜇 + 𝑠𝑖𝑛ℎ 𝜃 (−𝛿(𝑡)𝑙2𝑉1 + 𝛿(𝑡)𝑙3𝑉2) 

 

So we can write for the two cases; in the optical fiber, we 

must take  
𝑑𝜃

𝑑𝑡
= 𝑙2.  Thus, we can say that the polarization 

vector  𝐸  moves the parallel transport along the direction 

of  𝑉2(𝑡) . Also, this motion can be given through the 

Fermi-Walker transportation law as follows; 

 

𝑑𝐸𝐹𝑊

𝑑𝑡
=
𝑑𝐸

𝑑𝑠
± ⟨𝐸, 𝑉2⟩

𝑑𝑉2
𝑑𝑡

+ ⟨𝐸,
𝑑𝑉2
𝑑𝑡

⟩𝑉2 

 

Then from Fermi-Walker parallelism, we see that the 

optical fiber is an  𝐸𝑉2 − Rytov curve with the condition 

that  ⟨𝐸, 𝑉2(𝑡)⟩ = 0 . Consequently, the direction of the 

state of polarized light changes in the vector field  𝑉2(𝑡).  

 

3.3 A Berry phase model of the polarized light 

wave in the optical fiber through Null cone fronts 

E ⊥ 𝝁 

 

Case 3: In this case we suppose that E make a right angle 

with 𝜇. So, we can write this expression; 

 

⟨𝐸, 𝜇⟩ = 0     (11) 

 

If we take the derivative of (8) and take into account the (4) 

and (1) equations, we can write; 

 

𝐸 = 𝛿(𝑡)⟨𝐸, 𝑉1⟩𝑉1 + ⟨𝐸, 𝑉2⟩𝑉2   (12) 

 

When necessary calculations are made, we can get 

 
𝑑𝐸

𝑑𝑡
= (𝜆⟨𝐸, 𝑉2⟩)𝑉1 − 𝜆⟨𝐸, 𝑉1⟩𝑉2 + (𝛿(𝑡)𝑙2⟨𝐸, 𝑉1⟩ −

𝛿(𝑡)𝑙3⟨𝐸, 𝑉2⟩)𝜇     (13) 

 

The  𝜆  part of Eq(13) demonstrates the rotation around the 

principal tangent vector  𝜇 . If we suppose that  𝜋  is parallel 

transported (i.e.  𝜆 = 0 ), then we find; 

 

𝑑𝐸

𝑑𝑡
= (𝛿(𝑡)𝑙2⟨𝐸, 𝑉1⟩ − 𝛿(𝑡)𝑙3⟨𝐸, 𝑉2⟩)𝜇 

 

Generally, we can also write; 

 

𝐸 = 𝛿(𝑡)⟨𝐸, 𝑉1⟩𝑉1 + ⟨𝐸, 𝑉2⟩𝑉2 

 

Then take the derivative of last equation and using Eq(1), 

we get; 

 

𝑑𝐸

𝑑𝑡
= (𝛿(𝑡)⟨𝐸, 𝑉1⟩

′ + 𝑙1⟨𝐸, 𝑉2⟩)𝑉1 

+(𝛿(𝑡)𝑙1⟨𝐸, 𝑉1⟩ + ⟨𝐸, 𝑉2⟩
′)𝑉2 

+(𝛿(𝑡)𝑙2⟨𝐸, 𝑉1⟩ + 𝑙3⟨𝐸, 𝑉2⟩)𝜇 

 

Finally, we can write the matrix form; 

 

(
⟨𝐸, 𝑉1⟩

′

⟨𝐸, 𝑉2⟩
′) = (

0 −𝑙1𝛿(𝑡)
−𝑙1𝛿(𝑡) 0

) (
⟨𝐸, 𝑉1⟩
⟨𝐸, 𝑉2⟩

) 

 

On the other hand, since  ⟨𝐸, 𝐸⟩ = 𝑘 ,  𝑘  is a constant and 

using the spherical coordinates, we can write the following; 

If E , V 2  are respectively spacelike and timelike vector, 

we get; 

 

𝐸 = 𝑠𝑖𝑛ℎ 𝜃 𝑉2 + 𝑐𝑜𝑠ℎ 𝜃 𝑉1 

 

We assume that V 2  timelike, we get; 

 

𝑑𝐸

𝑑𝑡
= (𝑙3⟨𝐸, 𝑉2⟩ + 𝑙2⟨𝐸, 𝑉1⟩)𝜇 + (

𝑑𝜃

𝑑𝑡
+ 𝑙1)(𝐸 × 𝜇) 

 

If E timelike vector and V 2  timelike vector, we can write; 

 

𝐸 = 𝑐𝑜𝑠ℎ 𝜃 𝑉2 + 𝑠𝑖𝑛ℎ 𝜃 𝑉1 

 

Then if we calculate at the same way, and use Eq(1) and 

the last equation, we can write; 

 

𝑑𝐸

𝑑𝑡
= 𝑠𝑖𝑛ℎ 𝜃 𝑉2 + 𝑐𝑜𝑠ℎ 𝜃 (𝑙1𝑉1 + 𝑙3𝜇) 

+ 𝑐𝑜𝑠ℎ 𝜃 𝑉1 + 𝑠𝑖𝑛ℎ 𝜃 (𝑙1𝑉2 + 𝑙2𝜇) 

 

So, we calculate respect to cross product of framed curve's 

frame, we write; 

 

𝑑𝐸

𝑑𝑡
= (𝑙2⟨𝐸, 𝑉2⟩ + 𝑙3⟨𝐸, 𝑉1⟩)𝜇 + (

𝑑𝜃

𝑑𝑡
+ 𝑙1)(𝐸 × 𝜇) 
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So, we can write for the two cases; in the optical fiber, we 

must take  
𝑑𝜃

𝑑𝑡
= 𝑙1.  Thus, we can say that the polarization 

vector  𝐸  moves the parallel transport along the direction 

of  𝜇(𝑡) . Also, this motion can be given through the Fermi-

Walker transportation law as follows; 

 

𝑑𝐸𝐹𝑊

𝑑𝑡
=
𝑑𝐸

𝑑𝑠
± ⟨𝐸, 𝜇⟩

𝑑𝜇

𝑑𝑡
+ ⟨𝐸,

𝑑𝜇

𝑑𝑡
⟩𝜇 

 

Then from Fermi-Walker parallelism, we see that the 

optical fiber is an  𝐸𝜇 − Rytov curve with the condition that  

⟨𝐸, 𝜇(𝑡)⟩ = 0. Consequently, the direction of the state of 

polarized light changes in the vector field  𝜇(𝑡).  

 

4. Example 

 

Let  𝛾  be a spacelike curve in 𝑅3
1, defined by; 

 

𝛾(𝑡) = (
1

2
𝑡2,

1

2
𝑡2,

1

4
𝑡4 +

1

2
𝑡2) 

𝑉1(𝑡) =
1

√(𝑡2 + 1)2((𝑡2 + 1)2 + 1)
(0, 𝑡2 + 1,−1) 

𝑉2(𝑡) =
1

√(𝑡2 + 1)2((𝑡2 + 1)2 + 1)
((𝑡2 + 1)2 + 1,1, 𝑡2

+ 1) 

 

Fig. 1. Behavior of the polarization E (red) along the 

optical fiber for the case E ⊥ V1 
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