

The I-V Characteristics of a New Ru(II) Complex for Different Devices

O. Dayan^{1*}, Z. Şerbetçi², F. Yakuphanoglu³, N. Özdemir⁴, A. Dere³, M. Tercan¹ and A. Bilici¹

¹Çanakkale Onsekiz Mart University, Faculty of Science and Arts, Department of Chemistry, Çanakkale/TURKEY

²Bingöl University, Faculty of Science and Arts, Department of Chemistry, Bingöl/TURKEY

³Fırat University, Faculty of Science and Arts, Department of Physics, Elazığ/TURKEY

⁴Ondokuz Mayıs University, Faculty of Education, Department of Mathematics and Science Education, Samsun/TURKEY

Dye Sensitized Solar Cells (DSSCs) have become very popular for the last decades because of their superior electrical properties, low-cost, conductivity, high molecular weight, and the possibility to modify the structure with different chromophore groups. Ru complexes containing bi- and tri- dentate benzimidazole type ligands are very important in DSSC technology. In this study, L1 ligand was synthesized by derivation of 2,2'-(pyridine-2,6-diyl)bis(5,6-dimethyl-1H-benzimidazole) ligand and Ru-L1 complex was prepared by using isonicotinic acid and isothiocyanate as ancillary ligands. The synthesized Ru(II) complex was characterized by NMR, FT-IR, UV-Vis spectroscopic techniques, HOMO-LUMO energy levels were determined and compared with the theoretical calculations. DSSC efficiency of the Ru(II) complex was investigated under various light intensities and the I/V characteristic of the diode that produced with Ru(II) complex was examined.

Keywords: DSSCs, Ru complex, Benzimidazole type ligands, HOMO-LUMO energy, Diode

Submission date: 27 March 2018

Acceptance Date: 18 June 2018

***Corresponding author:** osmandayan@comu.edu.tr

1. Introduction

There is great attention to the production of Solar cells both in laboratory and industry. Dye-sensitized solar cells (DSSC) are relatively much safest and cheaper than other kinds of solar cells[1, 2]. For this, there is much ongoing research in the literature to obtain a good DSSC. An important part in DSSC is the dye layer which ruthenium complexes containing anchor ligands are generally used. In this work, we synthesized a new ruthenium complex containing 2,6-bisbenzimidazole ligands as an ancillary ligand and isonicotinic acid as an anchor ligand and tested their I-V characteristics in DSSC. Additionally, a diode was produced using synthesized Ru(II) complex and its I-V characteristics were analyzed. Recently, many diodes prepared in the literature using Ru(II) complexes.

2. Experimental details

A Jeol JNM-ECX400II was used for NMR spectra at 297 K. A Thermo Scientific Evolution 201 system was used for UV-Vis spectra. Optical band gaps were calculated using literature method from UV-Vis spectra [3]. A CHNS-932 (LECO) instrument was used for the CHN analyses of complex. A Perkin Elmer Spectrum One FT-IR system was used for the infrared spectra. Cyclic voltammogram (CV) was monitored with a MTI-BST8-STAT-EIS-LD instrument. The Al/Ru(II)-L1/n-Si/Al diode was fabricated according to literature method using Al for thermal evaporation source [4]. DSSC was prepared according to literature method[5].

2.1. Synthesis of Ligands

The L1 ligand was synthesized according to literature method using 2,3,5,6-tetramethylbenzyl chloride and 2,2'-(pyridine-2,6-diyl)bis(5,6-dimethyl-1H-benzimidazole)[5].

¹H-NMR (400 MHz, CDCl₃) δ ppm 1.98 (s, 12 H), 2.13 (s, 6 H), 2.15 (s, 12 H), 2.31 (s, 6 H), 6.13 (s, 4 H), 6.37 (s, 2 H), 6.92 (s, 2 H), 7.55 (s, 2 H), 8.02 (t, 1 H), 8.39 (d, 2 H). ¹³C-NMR (101 MHz, CDCl₃) δ ppm 15.57, 20.43, 24.15, 29.81, 46.57, 111.90, 119.85, 125.23, 129.72, 131.30, 131.66, 131.69, 131.85, 132.38, 133.34, 133.99, 134.84, 137.89, 141.53, 149.69, 150.29. FT-IR (cm⁻¹): 3029, 2966, 2918, 1624, 1576, 1507, 1474, 1449, 1409, 1384, 1355, 1325, 1262, 1218, 1160, 1131, 1083, 1040, 1002, 960, 904, 868, 834, 771, 739, 708, 668, 650, 598, 554, 509, 457, 433.

2.2. Synthesis of the new Ru(II) complex

The L1 ligand (0.684mmol) and [RuCl₂(p-cymene)]₂complex (0.326mmol) were mixed in DMF (10mL) at 80°C for 4h. Then, isonicotonic acid (ina) (0.684mmol) and ammoniumthiocyanate (1.304mmol) were added and stirred at 160°C for further 24 h. At the end of this time, the reaction volume was distilled approximate 2mL and Et₂O was added to obtain a dark-brown solid. The crude product was filtered off and washed with H₂O, EtOH and Et₂O, respectively.

Anal. Calc. For [(L1)(SCN)₂(ina)Ru].EtOH: C, 63.1; H, 5.8; N, 10.7 % found : C, 63.0; H, 5.9; N, 10.3 %. ¹H-NMR (400 MHz, DMSO-d6) δ ppm 2.10 (d, J=3.21 Hz, 12 H) 2.35 (s, 6 H) 2.49 (s, 4 H) 6.18 (s, 4 H) 6.21 (s., 2 H) 6.46 (s, 2 H) 7.01 (s, 2 H) 7.23 (d, J=5.50 Hz, 2 H) 7.80 (t, J=7.8 Hz, 1 H) 7.86 (d, J=5.50 Hz, 2 H) 8.42 (d, J=7.8Hz, 2 H). ¹³C-NMR (101 MHz, DMSO-d6) δ ppm 15.61, 15.81, 20.60, 34.80, 47.70, 113.09, 118.49, 123.57, 130.25, 131.50, 132.48, 134.03, 134.43, 135.30, 139.95, 140.58, 141.24, 151.03, 152.01, 153.82, 154.70, 158.61, 162.39, 169.25. FT-IR (cm⁻¹): 3396, 2989, 2972, 2902, 2102, 1686, 1595, 1472, 1436, 1408, 1394, 1382, 1250, 1242, 1229, 1075, 1066, 1057, 1028, 892, 879, 800, 772, 738, 696, 674, 603, 581, 538, 458, 434.

2.3. Computational procedure

The theoretical calculations were carried out by using the Gauss-View graphical user interface [6] and Gaussian 03 software package [7] with LANL2DZ basis set for metal ion and 6-311g(d,p) for remaining atoms.

3. Results and discussion:

The L1 was synthesized from the reaction of 2,2'-(pyridine-2,6-diyl)bis(5,6-dimethyl-1H-benzimidazole), KOH and 2,3,5,6-tetramethylbenzyl chloride in acetone under reflux conditions. The complex was synthesized from the reaction of [RuCl₂(p-cymene)]₂, ina and NH₄SCN using

Schlenk techniques. The complex reaction scheme was given Figure 1. The various spectroscopic and analytic techniques were used for characterization of compounds such as NMR, FT-IR, UV-vis.

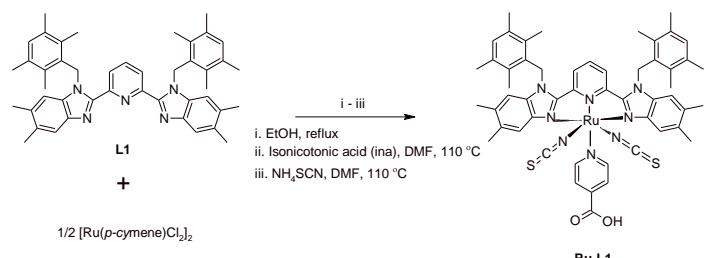
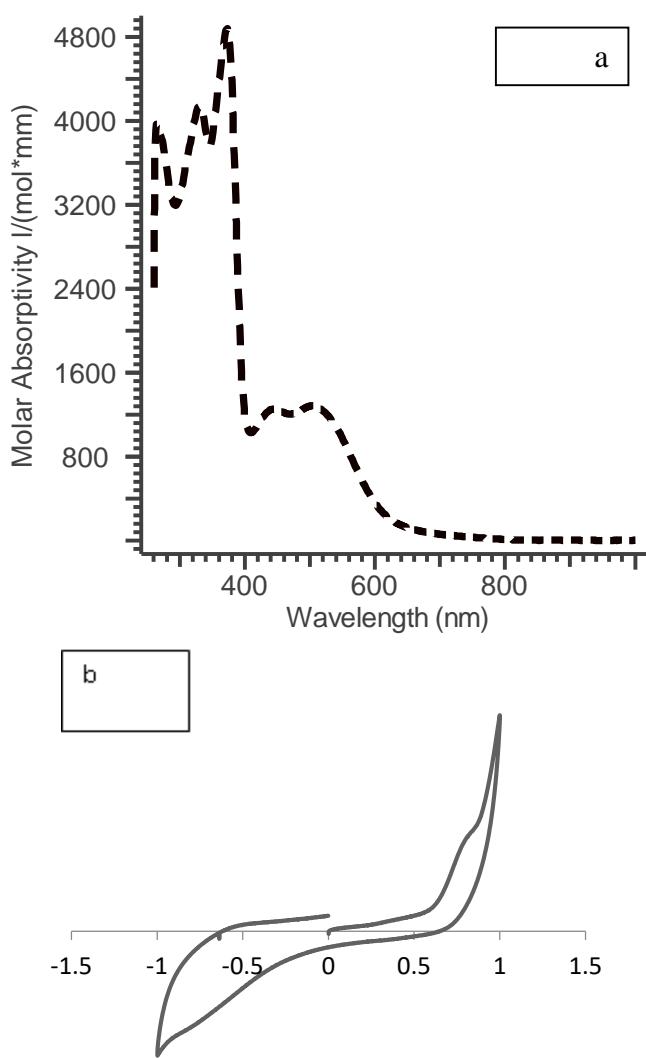
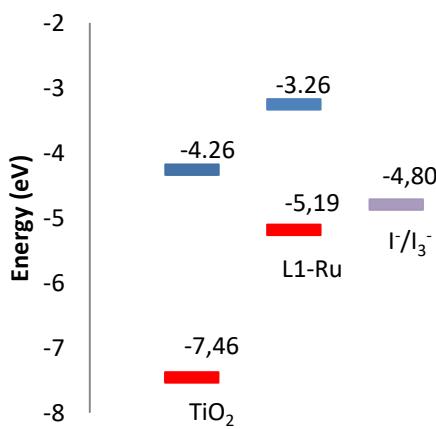



Fig.1: Synthesis of Ru(II)-L1


The data of NMR and FT-IR spectra were given in the experimental section, and the data supports the proposed structure formulas.

The electronic spectra of the Ru(II)-L1 complex in DMF were given Figure 2(a). The absorption spectra of complex were compatible with literature [8]. While the three huge bands between 300 nm and 400 nm are $\pi\rightarrow\pi^*$ transitions, the broad band between around 450-600 nm was attributed to the metal to ligand charge transfer bands. Optical band gap (E_{bg}) of the Ru(II)-L1 complex obtained from absorption spectra is 1.93 eV.

The electrochemical properties of the Ru(II)-L1 complex were examined with cyclic voltammetry technique (Fig. 2b). The voltammogram of the complex was displayed an irreversible oxidation peak in DMF solution including 0.1 M LiClO₄ (supporting electrode) at scan rate of 100 mV.s⁻¹. The HOMO energy level of the complex was calculated E_{HOMO} = -(E_{ox} - E_{Fe/Fe+})⁺ (-4.8), and the energy level of LUMO was calculated from E_{LUMO} = E_{HOMO} + E_{bg} [9, 10]. The Fig. 3. shows an energy level diagram of the Ru(II)-L1 complex together with TiO₂ and I/I₃⁻ levels. Fig. 3. reveals that the complex is fully compatible to use as sensitizers in DSSC. While the LUMO level of the complex is under the energy level of the I/I₃⁻ redox couple, the HOMO level of the complex is over the energy level of the TiO₂ conduction band.

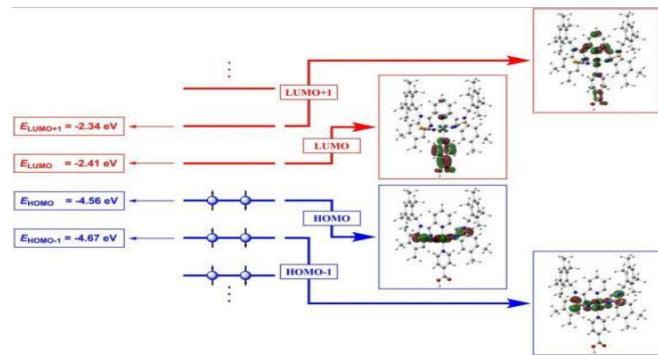
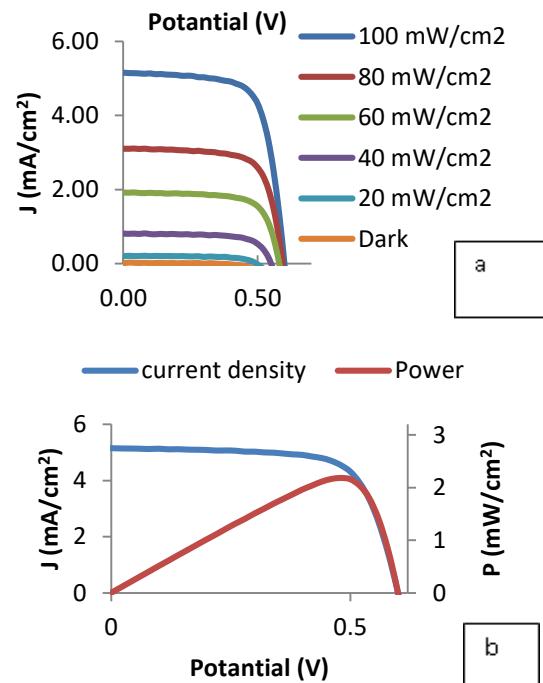

Fig.2: The absorption spectra of Ru(II)-L1 complex (1×10^{-5} M in DMF) (a) and Cyclic voltammograms of Ru(II)-L1 (b) complex were measured in DMF solution (1×10^{-3}) at scan rate of 100 mV s^{-1} .

Fig.3: HOMO (red) and LUMO (blue) energy levels of the complex together with TiO_2 and I_3^-/I^- levels


The optimized molecular structures and calculated molecular orbitals of Ru(II)-L1 were calculated with energy

levels in vacuo (Fig. 4). The results show that HOMOs and HOMO-1s fully settle down located at the metal and NCS⁻ ligands while LUMOs locate at the ina ligand.

Fig.4: Optimal molecular structure and isodensity surface plots of the first two frontier molecular orbitals

The synthesized complex was tested in DSSC as sensitizer. The current density–voltage (J–V) curves of prepared DSSC were monitored under various illumination intensities (Fig. 5). The I–V characteristics of prepared DSSC were given in Table 1. The data show that increasing light intensity generally increases the short circuit current and the open circuit voltage.

Fig.5: a) The current density–voltage curves of DSSC under various light intensities. b) The power–voltage and current density–voltage overlapped curves of DSSC under 100 mW/cm^2 light intensities.

Table 1. The I-V characteristics of prepared DSSC using the Ru(II)-L1 complex under various incoming light intensity

factor is 4.0. For better devices, the ligands around Ru(II) may slightly be changed using similar groups.

L2-Ru	Incoming Light Intensity				
	100 mW/cm ²	80 mW/cm ²	60 mW/cm ²	40 mW/cm ²	20 mW/cm ²
J_{sc} (mA/cm ²)	5,153	3,099	1,917	0,817	0,201
V_{oc} (V)	0,620	0,600	0,600	0,560	0,500
FF	0,684	0,707	0,687	0,684	0,697
η %	2,183	1,642	1,316	0,782	0,350

Additionally, a diode was prepared using Ru(II)-L1 complex and tested its I-V characteristics at room temperature under dark conditions. In I-V curve of diode was given in Fig 6. The ideality factor of prepared diode was determined with literature method as 4.0 [11]. This value is very large for ideal diode. This observation is related with interface conditions and nature of diode.

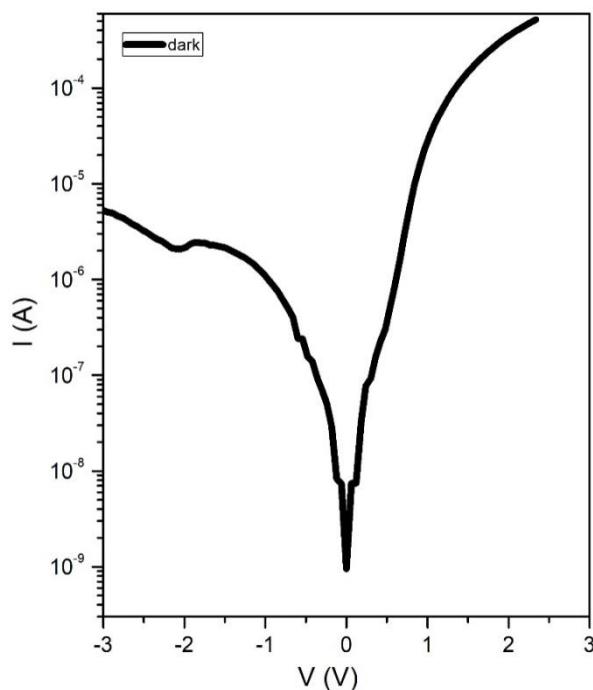


Fig.6: In(I)-V curve of Al/Ru(II)-L1/n-Si/Al

Conclusions

In this paper, we synthesized a new Ru(II) complex containing 2,6-bisbenzimidazole ligands as an ancillary ligand and isonicotinic acid as an anchor ligand and characterized with structural-, spectral- and electrochemical methods. The theoretical properties of complex were computed using DFT method. The complex tested their I-V characteristics in DSSC and diode devices. The result show that the DSSC device has moderate power conversation yield (n%) and the prepared diode ideality

Acknowledgements

This research has been partly supported by The Scientific and Technical Research Council of Turkey (TUBİTAK) (Project No:114Z439).

References:

- [1] B. Oregan, M. Gratzel, A Low-Cost, High-Efficiency Solar-Cell Based on Dye-Sensitized Colloidal TiO₂ Films, *Nature* (1991) 353:737-740.
- [2] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Dye-Sensitized Solar Cells, *Chem Rev.* (2010) 110:6595-6663.
- [3] K. Colladet, M. Nicolas, L. Goris, L. Lutsen, D. Vanderzande, Low-Band Gap Polymers for Photovoltaic Applications, *Thin Solid Films* (2004) 451:7-11.
- [4] A. Tataroğlu, O. Dayan, N. Özdemir, Z. Şerbetçi, A.A. A-Ghamdi, A. Dere, et al, Single Crystal Ruthenium(II) Complex Dye Based Photodiode, *Dyes Pigments* (2016) 132:64-71.
- [5] O. Dayan, N. Özdemir, F. Yakuphanoğlu, Z. Şerbetçi, A. Bilici, B. Çetinkaya, et al, Synthesis and Photovoltaic Properties of New Ru(II) Complexes for Dye-Sensitized Solar Cells, *J. Mater Sci-Mater El.* (2018) 29:11045-11058.
- [6] R. Dennington, T. Keith, J.G. Milliam, Version 4.1.2. Semichem Inc. (2007).
- [7] G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, J. J. Montgomery, et al, Gaussian-03, Revision E.01. Gaussian Inc, Wallingford, CT. (2004).
- [8] Q.Y. Yu, B.X. Lei, J.M. Liu, Y. Shen, L.M. Xiao, R.L. Qui, et al, Ruthenium Dyes with Heteroleptic Tridentate 2,6-bis(benzimidazol-2-yl)-pyridine for Dye-Sensitized Solar Cells: Enhancement in Performance through Structural Modifications, *Inorg Chim Acta* (2012) 392:388-395.
- [9] B. Chen, Y.H. Li, W. Yang, W. Luo, H.B. Wu, Efficient Sky-Blue and Blue-Green Light-Emitting Electrochemical Cells Based on Cationic Iridium Complexes using 1,2,4-triazole-pyridine as the Ancillary Ligand with Cyanogen Group in Alkyl Chain, *Org Electron* (2011) 12:766-773.
- [10] Z.Z. Lu, J.D. Peng, A.K. Wu, C.H. Lin, C.G. Wu, K.C. Ho, et al, Heteroleptic Ruthenium Sensitizers with Hydrophobic Fused-Thiophenes for Use in Efficient

Dye-Sensitized Solar Cells. *Eur J Inorg Chem.* (2016) 1214-1224.

[11] S.K. Cheung, N.W. Cheung, Extraction of Schottky Diode Parameters from Forward Current-Voltage Characteristics. *Appl Phys Lett.* (1986) 49:85-87.