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We propose a thermoelastic model for strain effects in microscale planar and nanoscale cylindrical and spherical
core/shell heterostructures, which takes into account the difference between lattice constants, linear thermal
expansion coefficients, free thermal expansion of lattice constants and elastic stiffness constants of constituent
semiconductors. Using the stress-strain relations for thermoelastic bodies, coupled with lattice mismatch induced
discontinuity in elastic strain at heterointerface so called shrink fit condition, explicit analytical expressions are
derived for interface strain in microscale heterolayers and nanoscale cylindrical and spherical core/shell
heterostructure nanowires and quantum dots. Proposed model predicts that the room temperature values of in
plane linear thermal expansion coefficient of GaAs thin film is identical to that of silicon substrate (

a,(GaAs) = 2.92x10°K ™), but smaller than in bulk GaAs (¢, (GaAs) =5.72x10°K ™), while the out of plane
linear thermal expansion coefficient exceeds the bulk value by Poisson ratio (OgL (GaAs) =8.57 x107° K-l) , Which are

in excellent agreement with high resolution x-ray scattering measurements. Furthermore, lattice vibration, lattice
mismatch and thermal expansion coefficients mismatch effect on core band gaps of CdSe/CdZnS and ZnSe/CdzZnS
QDs are calculated as a function of temperature, which are in good agreement with experimental optical absorption
data. Results suggests that the proposed thermoelastic strain model can be a good predictive tool for the design of

highly mismatched microscale and nanoscale heterostructure devices operating at high temperatures.
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1. Introduction

Advances in growing semiconductor thin films
having differing physical properties with varying
composition and layer thickness approaching atomic
dimensions have provided new opportunities and challenges
in basic scientific studies and in fabrication of electronic and
optical device [1]. In addition to sophisticated growth and
fabrication techniques, advancement in microscale and
nanoscale semiconductor devices requires reliable and
precise theoretical modelling of structural, electronic and
optical properties of group IV elemental and groups 111-V and
[1-V1 binary and

ternary compound heterostructures to predict their potentials.
Therefore, they have received considerable attention among
device scientists and engineers over almost half of a century
in attempting to understand the underlying physics of
interface formation and reliable modelling and precise
determination of their magnitudes.

When two semiconductors with different physical
properties are brought together to form a coherently strained
heterostructure, difference between conduction and valence
band energy levels of constituents is accommodated by
discontinuities AE; and AEy at heterointerface,which control
electronic and optical properties of constituents and charge
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transport across the heterostructure. Figure 1 shows energy
band diagram of Type | (a) and Type I1 (b) heterostructures
formed between a wide bandgap semiconductor and a harrow
bandgap semiconductor. In Type | heterostructures (Fig. 1a),
conduction and valence bands of constituents are aligned in
straddling type ( AEc = AEq—AE, and AEg = AEgs —AE4s) and
in Type Il heterostructures (Fig. 1b) they are aligned in
staggered type (AE. = AEq + AE, ) across heterointerface.
As the lattice constant of outer semiconductor is
generally different from that of the inner semiconductor,
elastic strain develops across heterointerface, which influence
energy band structure of constituents. Numerous models have
been proposed over the years to calculate the strain effects on
electronic properties of semiconductor heterostructures [2-
17]. All continuum elasticity models in case of epitaxial thin
films use the original work of Frank and van der Merve
[3] and Matthews and Jesser [4] and in case of core/shell
nanostructures use the original work of Mott and Nabarro
[5,6] and Eshelby [7]. Strain effects in two, one and zero
dimensional heteroestructures have been extensively studied
and is reasonably well understood at constant temperature.
However, the strain effects due to linear thermal expansion
coefficients difference and free thermal expansion of
constituent semiconductors is still an obstacle.
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Figure 1. Schematic band diagram of Type | (a) and of Type
Il (b) heterostructures.

In this work, we will give analytical expressions for strain
effects in microscale and nanostructures by using continuum
elastic theory of thermoelastic bodies coupled with the
discontinuity in elastic strain at heterointerface, called shrink
fit condition. The paper is organized as follows: In section 2
we will give a basic review of thermoelastic strain modelling
and boundary conditions in planar, cylindrical and spherical
coordinates. In section 3, we give derivation of in plane and
out of plane strain in heterostructures with planar geometry
such as quantum wells and supelattices. In sections 4 and 5,
respectively, analytical expressions will be derived for
interface strain in cylindrical and spherical core/shell
semiconductor heterostructures as a function of temperature.
In section 6, a detailed discussion of results will be given for
calculating the in plane and out of plane thermal expansion of
GaAs thin film grown on Si (001) substrate and temperature
dependent interface strain effects on band gap of CdSe/Cd
(Zn) S and ZnSe/Cd (Zn) S core/shell quantum dots.
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2. Basics of Thermoelastic Strain Model

Thermal changes in a thermoelastic body are accompanied by
the shifts in relative positions of particles composing the
body. Since the thermal expansion of volume elements cannot
proceed freely, the total strain can be thought to consist of the
sum of the thermal strain and the elastic strain produced by
the resistance of the medium to thermal expansion [18,19,20].
Therefore, thermal strains are added to elastic strains due to
local mechanical stress (i.e., due to lattice mismatch), so that
Hooke’s law is modified to the following stress-strain
relations for thermoelastic bodies [18]

& = é[(l-i- v)O'ij —VO'kké‘ij]+05AT5ij 1)

where gj; and ojj are the strain and stress components,
respectively. The term aA T is the thermal strain due to
temperature change . AT The inversion of Eq. (1) gives

oy = E [5ij + Y gkkdij]—iaAT(Sij 2
@+v) 1-2v) 1-2v)

In using Egs. (1) and (2) for strain modelling in rectangular
coordinates system, the subscripts x,y, z are substituted for i
and j, respectively, and cylindrical (or spherical) system of
coordinates, subscripts rr , 60 , zz (or rr , 60, o) are
substituted for i and j, respectively.

In system of rectangular coordinates, the components of
displacement vector in the X, y and z directions are and ,
respectively, and strain-displacement relations are [18]
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Since we are dealing with thermoelastic body, there are no
shear strains (exy =ey,= €:x =0)
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Figure 2. Schematic view of strain effect in microscale
pseudomorphic heteroepitaxy
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The use of Egs. (1) and (2) for modelling of strain in
microscale pseudomorphic heterostructures (shown in Fig. 2)
are subject to the following boundary conditions: (i) stress is
zero across 5 heterointerface along growth direction (out of
plane), (ii) substrate is free of stress in any crystal directions,
and (iii) in plane elastic strain has a lattice mismatch induced
discontinuity at heterointerface, so called shrink fit condition,
introduced here as

E —& =g, =— 4)

where eif and ei® are in plane strains in epilayer and thick
(001) substrate, respectively, and . —(a —a,)/a, IS the

lattice mismatch across epilayer/substrate heterointerface.
In system of cylindrical coordinates the components
of the displacement vector inr, ¢, and Z directions are u_,u,

,andu, and the strain-displacement relations are [18]

ou, . u lou, . ou
=% -

il - z (5)
-

E. = y Epp =
" oor “ r roo

There are no shear strains: go= &= €6 =0 . In system of
spherical coordinates, the displacement vector has only radial
component u, and strain-displacement relations are [18, 19]

_au,

D8 =&,=& _ U (6)
rr ar 1 t 60

There are no shear strains: 5ra=€m=€¢9=0 since we

consider structure as thermoelastic body.

In modelling of strain effects in cylindrical and spherical
core/shell heterostructures, the use of Egs. (1) and (2) are
subject to the following boundary conditions: (i) stress is
continuous across the core/shell heterointerface, (i) there is
no stress outside the core/shell heterostructure, and (iii)
tangential elastic strain has a lattice mismatch induced
discontinuity at heterointerface, so called shrink fit condition,
defined as [18]:

[r(gra _gia)] |r:a: a"E‘im (7)

Furthermore, the temperature is uniform throughout
cylindrical and spherical core/shell heterostructures, which
are subject to an inner and outer pressure Pi and Po,
respectively (Fig. 2).
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Py
Figure 3. Schematic cross-sectional view of core/shell
cylindrical and spherical heterostructure.

In sections 3, 4 and 5 we will use the thermoelastic stress-
strain relations, definitions for strain displacements and
boundary conditions given in this section to derive interface
pressure and strain in microscale planar epitaxy such as
quantum wells and nanoscale cylindrical and spherical
core/shell heterostructures such as nanowires and quantum
dots as a function of temperature.

3. Strain in Microscale Heterostructures

In modeling strain effects in microscale heterostructures
(shown in Fig. 2), we can use Eq. (1) to write following
relations for the in- and out- of plane strains in heterolayer on
a thick substrate

f
a —a, (I-v v
=gl =g/ =AY 0TV s Y o g ag ®
ar £y E;
a, —a 1 v
gl =gl =— L-— i =L qlf+afAT ®)
E E
ay 7 7

where ayf and a."are in- and out- of plane distorted lattice
constants, and ar is relaxed lattice constant of epilayer,
respectively. AT =T -To =T is temperature change relative
to T, =0K . Since stress is zero in thick substrate in all
directions (ox’ =oyy’= 6" =061° =on®=0), we can write

e =€, =€,=€6=¢6=aT (10)

for strain in (001) thick substrate, where as is linear thermal
expansion coefficient of substrate lattice constant. Equations
(8), (9) and (10) are coupled with so called shrink fit
condition, defined by Eq. (4), which describes lattice
mismatch induced discontinuity in elastic strain in plane of
heterostructure at interface, Substituting Egs. (8) and (10) into
Eqg. (4), with continuous stress condition along growth
direction (c.°=o.f= 0), one writes so called shrink-fit
condition as

(1_Vf)

f
From which one can write the in plane stress in epilayer as

o +a,T-aT=c¢, (11)
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E
f_ f _ 12
o (1_Vf)[gm+(ocS a)T] (12)

On substituting Eq. (12) into Eq. (8) with 6,/ = o1 =0 and
into Eq. (9) with 61.° =c." =0 , the in plane and out of plane
strain expressions, respectively, become

f f f_a — 8

=ént(a—a)T+a T (13)

v (o —a)T+a,T (14)

Egs. (13) and (14), respectively, reduce to & x'= ¢ x =&’ =¢ =
(an® —ar) fas =0T for the in plane and ez = e.f = (a.™~ ar)
las =o4T for out of plane distortions of lattice constant of thin
film due to its free linear thermal expansion.

4. Strain in Cylindrical Core/Shell Heterostructures

We consider an infinitely long concentric cylindrical
core/shell semiconductor heterostructure (cross-sectional
view is shown in Fig. 3) with inner and outer radius a and b
(a<<b) and is subject to an inner and outer pressure P;and P..
The core region is strained along z-axis due to the lattice

mismatch &z =&m =@ ~8:)/3y 3nq shell region is

unstrained (€= =94: /92 =0y " ging Eq. (1) one can then

write following strain-stress relations in cylindrical core/shell
heterostructure as [18]

_ a(e,)—a _ 1

£ —[o, -w(o,+0)]+aT (13a)
a E

£, = 7(7(8:)70 :%[o—e —v(e, +c.)]+aT (15b)

£, :m:i[az—v(ar+as)]+a]' (13¢)

a

where &, ,&, and &, are strain ando,, 0, and O, stress

components, E and v are Young’s modulus and Poisson
ratio, respectively.
Setting &, = ¢, in Egs. (15a) and (15b),

one then finds o, = 0,, and substituting this result into Eq.

(15¢) with &, = &, one finds following expression for stress
along z-axis in core region

o, =&, +E&, —EaT (16)
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Substituting Zir = ie = =~R and % back into Egs.
(15a) and (15b) one finds the following expression for strain
along radial and tangential direction in core region

R, P
i i6 = (1 ‘,i 2‘/; ) ‘R
E,

i

—ve, +(l+v)aT (17)

where P is contact pressure at core/shell interface, which is

to be found from shrink fit condition.
In shell region there is no displacement along z-
direction, so that strain in this direction is zero (

&, =0U,/0z=0). Following Ref. 18, one writes
o, =—P and o ,=P for radial and tangential stresses
inside shell region when all b and P, =0. Stress along z-

axis becomes
Om = Vm (O-mr + O-mH) - EmamT (18)

where Em and V, are Young’s modulus and Poisson ratio,

anda,, is linear thermal expansion coefficient of shell,
respectively. When all b and pressure outside nanowire is
zero (P, =0), Egs. (16a) and (16b) give 5, =-P and
=P, inside shell region. On substituting Eq. (15c) into

me i
Egs. (15a) and (15b), &, and &, then become
_y(en)—a, 14y,

(o}

o " P+ 1+v,)a, T (19)
a‘m Em
—a, 1
= (gn:) A _ E"m P+(+V,)a,T (20)

On substituting Egs. (17) and (20) into Eq. (7) (so
called the shrink fit condition) one finds the internal pressure
acting at cylindrical core/shell interface as

p_ EE.[QA-Vv)&, +(Q1+V)oT —(1+v,),T]

. (21)
' E,@-v,—2v7)+E,@1+V,)

On substituting Eqg. (21) into Eg. (17) and (19) and (20),
respectively, one then finds strains in core and shell regions,
giving the complete solution of the strain problem in
nanoscale cylindrical core/shell heterostructures when shell
radius is larger than radius of core (alJ b).

5. Strain in Core/Shell
Heterostructures

Spherical

The interface strain in spherical core/shell heterostructures
will be modeled by using continuum linear elastic theory of
thermoelastic bodies assuming no defects or plastic
deformation [18]. There is only radial displacement u, in a
hollow sphere with inner and outer radius a and b (cross-
sectional wiew is shown in Fig. 3), which is subjected to a
uniform temperature T and to an inner and outer pressure P;
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and P,. Because of the spherical symmetry, stress has a radial
componento,, =0, and two tangential components

Oy =0, =0 Using Eq. (1) strain-stress relations in
spherical core and shell regions are

& =&, = é(ar —2vo,)+aT (22)

1
& =Ep = E[O-t —V(o, +o)]+aT (23)
Since strains and stresses are uniform in the spherical core
region, we can set

Eq =Ep=Epy =&

and o, =0,=0, =0 =-P (24)

where & and o; =—P are, respectively, the hydrostatic

interface strain and stress acting on core region. P, is the

interface contact pressure between the i-core and m-shell
acting on core region. Using &, =&, =&,, =& and
O, =0y =0,, =0, =—B inEgs. (22) and (23) one writes
the following expression for strain-stress relation in core
region

o a(g)—q _1-2

Lo +aT = 1=
a, E E.

P+oT (25)

where E; and v,are the Young’s modulus and Poisson’s

ratio and ¢; is linear thermal expansion coefficient of core in

bulk form.
In shell region radial and tangential stresses are

Oy =-R ad o, =0,,=0,, =P/2 when all b and
P =0, respectively. On substitutings, =P,
Ot = Oy =0, =P 12 into Egs. (22) and (23) one then

obtains the radial and tangential strains in shell region as

mr:m:i(_g_VmR)JramT (26)
am Em

- :m:i[(l_vm)ﬂJrvmpihamT (27)
a E 2

m m

where E_and vy, are the Young’s modulus and Poissons ratio

andais linear thermal expansion coefficient of shell.
Combining Egs. (25) and (27) with the shrink fit condition

28
(Eg. (7)) one finds following expression for pressure at
core/shell interface

P= 2EiEm[‘c”im +(ai _am)T]

) — 28
' (L+v,)E +2(1-2v)E, 2%)

Substituting P, into Eq. (25) and into Egs. (26) and (27) one

1
then finds expression for strain in core and shell regions
respectively, giving the complete solution of the strain
problem in nanoscale spherical core/shell heterostructures
when shell radius is larger than radius of core (all b).

6. Results and Discussion

In this section, we will present results of calculations results
for interface strain effects in two, one, and zero dimensional
pseudomorphic semiconductor heterostructures. We will first
discuss results of our calculations on anisotropy of thermal
expansion of GaAs thin film grown on Si (001) substrate. We
will then show that temperature dependent interface strain
effects on core band gap of CdSe/Cd (Zn)S and ZnSe/Cd
(Zn)S heterostructure core/shell quantum dots.

6.1 Anisotropy of Thermal Expansion of GaAs
on Si(001)

The difference between lattice parameters of GaAs and Si is
4.1% at 300 K. X-ray diffraction measurements [19] has
shown that epitaxial GaAs thin films on vicinal Si (001)
substrate exhibit tetragonal distortion at 300 K. The in plane
thermal expansion of GaAs thin film follows the thermal
expansion of Si (001) substrate. Meanwhile, the out of plane
thermal expansion of GaAs thin film exceeds bulk value. The
in and out of plane lattice constants as well as the bulk GaAs
lattice constant all converge at about 490 °C (average value
of initial growth temperature.)

Strain effect on linear thermal expansion of GaAs
heterolayer grown on Si (001) substrate are obtained by
defining linear thermal expansion coefficients of epilayer
parallel and perpendicular to the growth direction as ¢ (T)

andr, (T). According to Egs. (13) and (14) one then writes
gxfx = gyfy =g/ =a'T and ngz = gI = aIT , respectively, which
gives

a! (1) = (=) e (M-, M+, (M) (29)
2 2

al (M) =— EMy e Mg, e, @) GO
v, T 1oy,

which show that in pseudomorphic planar heteroepitaxy,
lattice mismatch strain also contributes to in- and out- of
plane linear thermal expansion coefficients. Using Egs. (13)
and (14) one can write the following expressions for the
epilayer lattice constant distorted in plane and out of plane

a'=a(I+e)=a,(L+a'T)=a[L+e,(T) +[a,(T) -, (NI +a, (NT] (31)
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a =a,(l+e)=a,(L+a/T) =3, [1—12_%[8m(f)+(06ﬂ) —a; (T)T]+a; (T)T]

(32)

Temperature dependent in- and out- of plane linear thermal
expansion coefficients (¢ (T) and ¢z, (T)) and in-and out- of

plane strain distorted lattice constants (aLf and aj) of GaAs

epilayer on Si (001) are calculated from Egs. (31) and (32),

respectively. Elastic stiffness parameters, C,, =118 and

C,,; =5.30(in 10"°dyn/cm?) [20] are used in calculations.

The bulk lattice constants and linear expansion coefficients
for GaAs and Si fitted to following expressions [21]

a(T)=a,(1+ A+BT +CT?+DT?) (33)
aﬁ)/lO’eK’1=§§—$=B+2CT +3DT? (34)

where 20=0.565325 (0.543108) nm is bulk lattice constant of
GaAs (Si) at 300 K. Constants A, B, C, and D are empirical
fitting parameters [21]: A/10°2 = -0.147 (-0.071), B/106 K1 =
4.239 (1.887), C/10° K2 = 2,916 (1.934), and D/101? K3 =
-0.936 (-0.4544) for bulk GaAs (Si).

Figure 4a compares the temperature variation of in-
and out- of plane linear thermal expansion coefficients.
Meanwhile, Fig. 4b compares the temperature variation of in-
and out- of plane and lattice constant of GaAs epilayer
relative to its bulk value and to that of Si (001) substrate,
respectively. The in plane and out of plane lattice constants
as well as the bulk GaAs lattice constant all nearly converge
at about 490 °C (average value of initial growth temperature.)
Out of plane linear thermal expansion coefficient (' (T)) of

GaAs epilayer is equivalent to that of Si (001) substrate (
a(T)=a,(T)), but smaller than that of bulk GaAs (, (T))

over the entire temperature range. However, out of plane
thermal expansion coefficient ¢/(T) of GaAs epilayer

exceeds o' (T) by Poisson ratio. Similar observation is also

true for the corresponding in- and out- of plane distortions of
GaAs lattice constant (Fig. 4b) over the entire temperature
range. Results shown in Fig. 4a are in excellent agreement
with experimental findings of Lucas et al [19], who used high
resolution x-ray scattering technique to measure the

29
anisotropy in linear expansion coefficient of GaAs grown on
Si (001) substrate.
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Figure 4. Predicted temperature variation of in plane and out
of plane linear thermal expansion coefficients (a) and lattice
constants (b) of GaAs on Si (001).

Table 1. compares the model calculations with experimental
data of Lucas et al [19] for linear thermal expansion
coefficients and lattice constants of GaAs and Si (001) at 300
K.

Table 1. Comparison of predicted and measured in plane
and out of plane linear thermal expansion coefficient and
lattice constant of GaAs/Si(001)

Paramete GaAs GaAs Si Si

r (predicte | (measure | (Predicte | (measure
a,(10°K™) 7.9689 | 8.40 35095 | 3.51

a (10°K™) 3.5094 | 3.46 3.5095 | 3.46

a, (nm) | 056667 | 0.56602 | 0.5431 |-

a(nm) | 056592 | 056483 | 05431 |-

Using Eq. (12) one can determine the magnitude of in plane
stress that epilayer is subject to during growth. Figure 5
shows the temperature variation of in plane stress in GaAs on
Si (001) substrate. GaAs is subject to compressive in plane
stress over entire temperature, but slope begins to change at
around 900 K. This suggests that the proposed thermoelastic
strain model could be used as part of a predictive processing
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tool for planar heteroepitaxy to provide a pre-growth
conditions before the actual growth process takes place.

GaAs/Si (001)

IN PLANE STRESS (10" dyn/cm?)

0 100 200 300 400 500 600 700 800 ;00
TEMPERATURE(K )

Figure 5. Predicted temperature variation of in plane
stress in GaAs on Si (001) substrate.

6.2 Strain  Effects on Core Bandgap in
Core/Shell QDs

Second application of the proposed thermoelastic strain
model is about predicting the interface strain shifts in band
gap of type I and type Il spherical heterostructure core/shell
quantum dots. In a nanoscale Type | heterostructure, an
electron-hole pair excited near interface tend to localize in
core. Therefore, the exciton energy in core/shell
nanostructures with Type-1 band alignment is result of direct
exciton transition inside core region. In a nanoscale Type Il
heterostructure, the shell conduction band edge is located in
core bandgap leading to a local separation of the hole and
electron in core and shell. Therefore, holes (electrons) are
confined to core (shell) and electrons (holes) are confined to
shell (core), which are result of indirect exciton transition.
The corresponding locally indirect band gap is equal to
Ey =Eg —AE, in hole-electron and E}' = E_, — AE,
in electron-hole confinement, respectively.

Interface strain effects on the energy band structure
of constituents of type | and type Il spherical heterostructure
core/shell quantum dots can be easily determined by using the
so called the statistical thermodynamic model of
semiconductors [22], in which one expresses the conduction
and valence band edges as a function of pressure at any
temperature as:

a P> (1+B)
E (T,P)=E, +ACT(A-INT) -2 (P-—-———_LP° (35)
(T P) =y +ACIT(1-InT) =2 (P =22 PY)
where Eg is the bulk band gap at 0 K and a, =—B(cE, / oP)
is the deformation potential. B, is bulk modulus with its
pressure derivativeB =B /oP. actTa-InT) IS the lattice
vibration contribution with temperature increase. The third
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term is the sum of the internal thermal pressure (i.e., volume
expansion) and external pressure (i.e., due to lattice
mismatch). Using Eg. (33) one can define hydrostatic
pressure acting on electronic properties of core region as

2Em (1_ 2Vi)[‘("im + (am o )T]

i i

P=-B(s. +&,+& )=-3Be&(T)=-3BaT -3B
i |( 00 W) 1“i ) i i Ei(1+Vm)+2Em(1—2Vi)

(36)

ACp is the standard state heat capacity of reaction for

formation of electron-hole pair, obtained by fitting core band
gap calculated from Eq. (37) at constant external pressure

(without strain &; due to lattice mismatch) to measured
bandgap [22], usually fitted to empirical Varshni expression
[23]:E,;(T)=E,(0)+A/(l+BT), where A and B are
fitting constants for bulk semiconductor.

Substituting P, from Eq. (36) into Eq. (35) we can

incorporate interface strain into conventional isotropic two
band effective mass approximation [24] to determine the band
gap of spherical bare and type | heterostructure core/shell
QDs, given by the following equations

_ . . 2r* 7% 3.572¢*  0.124¢*
EM(g)=EY +SEY (&) +——5— +—— @7
0 (2)=E o (&) m,,d’ e d h’m’ &

CV 7o

bi . .
where EgI is bandgap in bulk form at T=0 K and
m,, =m.m;, /(m, +m;) is reduced effective mass of electron

hole pair. m, and m, , are effective masses of electrons and

holes and &, is optical dielectric constant of core in bulk

form. The third term represents confinement energy with a
1/d? dependence. The fourth term represents Coulomb
interaction energy with a 1/d dependence. Finally, last term is
the Rydberg correlation energy, which is negligible when & _

is large. SE(T,) is the shift in core band gap due to

interface strain at any temperature and hydrostatic pressure P,
, given by the following expression

ay P’ (1+B)
SEX(T,&)=ACST(A-InT) -2 (p -+ 5) pay - (38)
gi (r ‘9|) iP ( ) Bi ( i ZBI SBZ I )

where Egb is bandgap of core region in bulk form at T=0K.

In  spherical core/shell QDs with Type I
heterointerface band alignment, strain effects on core
bandgap and valence and conduction band offsets can be
calculated by using isotropic two band effective mass
approximation according to following expression

; R 2n°r® 35726 0.124¢* (39
EM(g)=E +5E§(T,g,)—AEV(5)+m*d2— o +hzm*€2( )

cv cv oo
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22 2 4
2i°'x" 3512¢°  0.124¢* (40)

md>  gd  Km,e?

oo

Egi(si) = Eg”‘ +5Eg"'(T,£m)—AEC(£)+

where Egi and Eg’“ are, respectively, core and shell bandgaps
in bulk form at T=0K, with shifts 5E§‘(|',gi) and 5Egm(T,gi)

due to strain at any temperature. Shift in band gap shell
constituent of core/shell QD due to interface strain at any

temperature and hydrostatic pressure P, is given by the
following expression

3 Po _(+B) 41
SE™(T 6 )= AC,T(L-InT)— 2 (p —-n__&F5n)p3y (41)
g (T gm) mP ( ) Bm ( m 2Bm San.l m )

where Ay, is bandgap deformation potential, and B_ is bulk

modulus (with its pressure derivative B'm) of shell
semiconductor in  bulk form, respectively. Finally,
P, (T,&)=-B(&y +&n +&,,) is hydrostatic pressure
acting on shell side, given as

3
P, =-3B,,T - 6B, E[(L—2v,)a’]ls,, + (o —a,)T]

(42)

In Egs. (39) and (40), AE,(¢) and AE (g)are strain

dependent valence and conduction band offsets, respectively.
Hydrostatic strain effects on valence band offsets is obtained
by taking difference between strain dependent valence band
widths of shell and core constituents, screened by their optical
dielectric constant in bulk form, and given as [25]

AE, (¢)=E, (s,)! &, —E,(&)] &, (43)

where E, (g)andE (&, )are strain dependent valence band

edges and &, and & are optical dielectric constants of of

core and shell constituent semiconductors, respectively.
Valence band widths of bulk semiconductors are determined
by using density functional theory with modified Becke—
Johnson exchange potential with local density approximation
(mBJLDA-DFT) model [25] and hydrostatic interface strain
shift is done using Eq. (23). Likewise, hydrostatic strain
effects on conduction band offset is obtained by adding
(subtracting) valence band offset to band gap difference,
respectively, given as

AE ()= AE, (e)FAE, (¢) (44)

where AE (£) = AE, (&) — AE, (&) and
AE (¢) = AE () +AE, (&) are conduction band offsets in

Type | and Type Il heterostructures, respectively, with strain
dependent shell and core band gap difference

[E,(+V, )+ 2E, (1-2v)]b* + 2[(1-2v,)E, —(1- 2,)E, Ja°

31
AE,(e) =Ej (&,) —E, (&) The interface strain effects on
band gap of bare CdSe and ZnSe core and heterostructure
core/shell CdSe/znS, CdSe/CdS, ZnSe/ZnS and ZnSe/CdS

quantum dots are calculated by using parameters given in
Table 2 for bulk CdSe, ZnSe, CdS and ZnS [21].

Table 2. Properties of some I11-VI compounds used in
model calculations.

Paramreitaelr/ Mate  cgse  znse  cds Zns

a(nm) 0.607 05668 0581  0.541

Eq (V) 175 270 250 3.68

dc;;/(clr?;; 746 810 770 101

dc)j;/(clr?;; 461 48 539 0.64

@ (105K 3.0 7.60 3.0 6.9
A 4.09x10* 5x10" 3.45x10* 5.48x10™

B 187 218 208 282

Figure 6 compares the contribution of the effects of interface
strain and lattice vibration (electron-phonon interactions) to
the total band gap shift in bare CdSe and ZnSe core QDs and
total shift in the core band gaps of CdSe/CdS (CdSe/ZnS) and
ZnSe/CdS (ZnSe/zZnS) core/shell QDs as a function of
temperature, respectively. As shown in Fig. 6, interface strain
contribution to core band gap shift is positive and decreasing
magnitude, while lattice vibration contribution is negative
and decreasing in magnitude, with temperature increase both
CdSe and ZnSe based core/shell QDs. Strain contribution to
core bandgap increase is larger (about 0.30 eV) when lattice
mismatch is large (e.g., in CdSe/ZnS and ZnSe/ZnS) and
small (less than 0.10 eV) when lattice mismatch is small (e.g.,
in CdSe/CdS and ZnSe/CdS), respectively.
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Figure 5. The effects of interface strain and thermal vibration
on band gaps of CdSe core in CdSe/CdS and CdSe/ZnS and
ZnSe/ZnS and ZnSe/CdS QDs as a function of temperature.

Figure 7 compares the effect of carrier confinement to CdSe
core band gap shift in CdSe/ZnS and CdSe/CdS QDs and
ZnSe core band gap shift of ZnSe/ZnS and ZnSe/CdS QDs
QDs at 300 K, respectively. In both cases, carrier confinement
energy contribution to shift in core bandgap is equal to
combination of a 1/d?> and a 1/d dependence.
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Figure 7. The effects of carrier confinement to CdSe core
band gap shift in CdSe/ZnS and CdSe/CdS QDs and ZnSe
core band gap shift in ZnSe/ZnS and ZnSe/CdS QDs at 300
K.

Combining the contributions of interface strain and lattice
vibration effects to shifts in core bandgap, using the material
parameters listed in Table 2, the core band gaps of bare CdSe
and ZnSe core QDs and core band gaps of CdSe/ZnS,
CdSe/CdS, ZnSe/ZnS and ZnSe/CdS core/shell QDs are
calculated as a function of temperature. Results shown in Fig.
8 indicate that, since lattice vibration and confinement effects
are same for both core and core/shell QDs, the main
contribution to the increase in core band gaps of core/shell
QDs is due to interface strain as a function of temperature.
The results are generally in good agreement with
experimental findings [26-28].
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Figure 8. Comparison of temperature variation of core band
gaps of bare CdSe core QD with those of CdSe/zZnS ,
CdSe/CdS, ZnSe/zZnS, and ZnSe/CdS core/shell QDS.

2. Conclusion

We discussed the effects of composition and interface strain
due to lattice mismatch and thermal expansion coefficients of
binary core and ternary shell on the electronic properties of
constituents of CdSe/Cd(Zn)S and ZnSe/Cd(Zn)S
heterostructure core/shell quantum dots as a function of
temperature. It is shown that the core band gap is mainly
influenced by the interface strain in heterostructure core/shell
quantum dots. Consistency between theoretical predictions
and experimental measurements implies that this model could
be expected to be a general approach to analyze electrical and
optical properties of nanoscale semiconductor systems.
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