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We propose a thermoelastic model for strain effects in microscale planar and nanoscale cylindrical and spherical 

core/shell heterostructures, which takes into account the difference between lattice constants, linear thermal 

expansion coefficients, free thermal expansion of lattice constants and elastic stiffness constants of constituent 

semiconductors. Using the stress-strain relations for thermoelastic bodies, coupled with lattice mismatch induced 

discontinuity in elastic strain at heterointerface so called shrink fit condition, explicit analytical expressions are 

derived for interface strain in microscale heterolayers and nanoscale cylindrical and spherical core/shell 

heterostructure nanowires and quantum dots.  Proposed model predicts that the room temperature values of in 

plane linear thermal expansion coefficient of GaAs thin film is identical to that of silicon substrate (

6 1

||( ) 2.92 10 )GaAs K    , but smaller than in bulk GaAs ( 6 1( ) 5.72 10 )b GaAs K    , while the out of plane 

linear thermal expansion coefficient exceeds the bulk value by Poisson ratio ( 6 1( ) 8.57 10 )GaAs K  

   , which are 

in excellent agreement with high resolution x-ray scattering measurements. Furthermore, lattice vibration, lattice 

mismatch and thermal expansion coefficients mismatch effect on core band gaps of CdSe/CdZnS and ZnSe/CdZnS 

QDs are calculated as a function of temperature, which are in good agreement with experimental optical absorption 

data. Results suggests that the proposed thermoelastic strain model can be a good predictive tool for the design of 

highly mismatched microscale and nanoscale heterostructure devices operating at high temperatures. 
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1. Introduction 
 
Advances in growing semiconductor thin films 

having differing physical properties with varying 

composition and layer thickness approaching atomic 

dimensions have provided new opportunities and challenges 

in basic scientific studies and in fabrication of electronic and 

optical device [1]. In addition to sophisticated growth and 

fabrication techniques, advancement in microscale and 

nanoscale semiconductor devices requires reliable and 

precise theoretical modelling of structural, electronic and 

optical properties of group IV elemental and groups III-V and 

II-VI binary and 

ternary compound heterostructures to predict their potentials. 

Therefore, they have received considerable attention among 

device scientists and engineers over almost half of a century 

in attempting to understand the underlying physics of 

interface formation and reliable modelling and precise 

determination of their magnitudes. 

When two semiconductors with different physical 

properties are brought together to form a coherently strained 

heterostructure, difference between conduction and valence 

band energy levels of constituents is accommodated by 

discontinuities Ec and Ev at heterointerface,which control 

electronic and optical properties of constituents and charge 
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transport across the heterostructure. Figure 1 shows energy 

band diagram of Type I (a) and Type II (b) heterostructures 

formed between a wide bandgap semiconductor and a narrow 

bandgap semiconductor. In Type I heterostructures (Fig. 1a), 

conduction and valence bands of constituents are aligned in 

straddling type ( Ec  Eg Ev and Eg  EgB EgA) and 

in Type II heterostructures (Fig. 1b) they are aligned in 

staggered type (Ec gEv ) across heterointerface.  

As the lattice constant of outer semiconductor is 

generally different from that of the inner semiconductor, 

elastic strain develops across heterointerface, which influence 

energy band structure of constituents. Numerous models have 

been proposed over the years to calculate the strain effects on 

electronic properties of semiconductor heterostructures [2-

17]. All continuum elasticity models in case of epitaxial thin 

films use the original work of Frank and van der Merve 

[3] and Matthews and Jesser [4] and in case of core/shell 

nanostructures use the original work of Mott and Nabarro 

[5,6] and Eshelby [7]. Strain effects in two, one and zero 

dimensional heteroestructures have been extensively studied 

and is reasonably well understood at constant temperature. 

However, the strain effects due to linear thermal expansion 

coefficients difference and free thermal expansion of 

constituent semiconductors is still an obstacle. 

  
 

Figure 1. Schematic band diagram of Type I (a) and of Type 

II (b) heterostructures. 

 

In this work, we will give analytical expressions for strain 

effects in microscale and nanostructures by using continuum 

elastic theory of thermoelastic bodies coupled with the 

discontinuity in elastic strain at heterointerface, called shrink 

fit condition. The paper is organized as follows: In section 2 

we will give a basic review of thermoelastic strain modelling 

and boundary conditions in planar, cylindrical and spherical 

coordinates. In section 3, we give derivation of in plane and 

out of plane strain in heterostructures with planar geometry 

such as quantum wells and supelattices. In sections 4 and 5, 

respectively, analytical expressions will be derived for 

interface strain in cylindrical and spherical core/shell 

semiconductor heterostructures as a function of temperature. 

In section 6, a detailed discussion of results will be given for 

calculating the in plane and out of plane thermal expansion of 

GaAs thin film grown on Si (001) substrate and temperature 

dependent interface strain effects on band gap of CdSe/Cd 

(Zn) S and ZnSe/Cd (Zn) S core/shell quantum dots. 

 

 

 

2. Basics of Thermoelastic Strain Model 
 

Thermal changes in a thermoelastic body are accompanied by 

the shifts in relative positions of particles composing the 

body. Since the thermal expansion of volume elements cannot 

proceed freely, the total strain can be thought to consist of the 

sum of the thermal strain and the elastic strain produced by 

the resistance of the medium to thermal expansion [18,19,20]. 

Therefore, thermal strains are added to elastic strains due to 

local mechanical stress (i.e., due to lattice mismatch), so that 

Hooke’s law is modified to the following stress-strain 

relations for thermoelastic bodies [18] 

 

1
[(1 ) ]ij ij kk ij ijv T

E
                                        (1) 

where ij and ij are the strain and stress components, 

respectively. The term  is the thermal strain due to 

temperature change .T The inversion of Eq. (1) gives  

 

[ ]
(1 ) (1 2 ) (1 2 )

ij ij kk ij ij

E E
T


     

  
   

  
                (2) 

 

In using Eqs. (1) and (2) for strain modelling in rectangular 

coordinates system, the subscripts x,y, z are substituted for i 

and j, respectively, and cylindrical (or spherical) system of 

coordinates, subscripts rr ,  , zz ( or rr ,  are 

substituted for i and j, respectively. 

In system of rectangular coordinates, the components of 

displacement vector in the x, y and z directions are   and , 

respectively, and strain-displacement relations are [18] 

  

; ;
yx z

xx yy zz

uu u

x y z
  

 
  
  

                                (3) 

 

Since we are dealing with thermoelastic body, there are no 

shear strains (xy =yz= zx =0) 

 
Figure 2. Schematic view of strain effect in microscale 

pseudomorphic heteroepitaxy 
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The use of Eqs. (1) and (2) for modelling of strain in 

microscale pseudomorphic heterostructures (shown in Fig. 2) 

are subject to the following boundary conditions: (i) stress is 

zero across 5 heterointerface along growth direction (out of 

plane), (ii) substrate is free of stress in any crystal directions, 

and (iii) in plane elastic strain has a lattice mismatch induced 

discontinuity at heterointerface, so called shrink fit condition, 

introduced here as 

s ff s

m

f

a a

a
  


                                          (4) 

where f and s are in plane strains in epilayer and thick 

(001) substrate, respectively, and  ( ) /m s f fa a a   is the 

lattice mismatch across epilayer/substrate heterointerface. 

In system of cylindrical coordinates the components 

of the displacement vector in r,  , and z directions are 
ru ,u

, and
zu  and the strain-displacement relations are [18] 

 

1
; ;r r z

rr zz

uu u u

r r r z


  



 
   
  

    (5) 

 

There are no shear strains: r rz z . In system of 

spherical coordinates, the displacement vector has only radial 

component ur and strain-displacement relations are [18, 19] 

 

;r r
r rr t

u u

r r
     


    


         (6) 

 

There are no shear strains: 0r r        since we 

consider structure as thermoelastic body.  

In modelling of strain effects in cylindrical and spherical 

core/shell heterostructures, the use of Eqs. (1) and (2) are 

subject to the following boundary conditions: (i) stress is 

continuous across the core/shell heterointerface, (i) there is 

no stress outside the core/shell heterostructure, and (iii) 

tangential elastic strain has a lattice mismatch induced 

discontinuity at heterointerface, so called shrink fit condition, 

defined as [18]: 



[ ( )] |r i r a imr a                                                  (7) 

 

Furthermore, the temperature is uniform throughout 

cylindrical and spherical core/shell heterostructures, which 

are subject to an inner and outer pressure Pi and Po, 

respectively (Fig. 2). 

 

 
Figure 3. Schematic cross-sectional view of core/shell 

cylindrical and spherical heterostructure. 

 

In sections 3, 4 and 5 we will use the thermoelastic stress-

strain relations, definitions for strain displacements and 

boundary conditions given in this section to derive interface 

pressure and strain in microscale planar epitaxy such as 

quantum wells and nanoscale cylindrical and spherical 

core/shell heterostructures such as nanowires and quantum 

dots as a function of temperature. 

 

3. Strain in Microscale Heterostructures 
 

In modeling strain effects in microscale heterostructures 

(shown in Fig. 2), we can use Eq. (1) to write following 

relations for the in- and out- of plane strains in heterolayer on 

a thick substrate 

 

where aII
f and af are in- and out- of plane distorted lattice 

constants, and af is relaxed lattice constant of epilayer, 

respectively.  is temperature change relative 

to To 0K . Since stress is zero in thick substrate in all 

directions (xx
s yy

s zz
s 

s
s), we can write  

s s s s s

xx yy zz sT                                            (10) 

 

for strain in (001) thick substrate, where s is linear thermal 

expansion coefficient of substrate lattice constant. Equations 

(8), (9) and (10) are coupled with so called shrink fit 

condition, defined by Eq. (4), which describes lattice 

mismatch induced discontinuity in elastic strain in plane of 

heterostructure at interface, Substituting Eqs. (8) and (10) into 

Eq. (4), with continuous stress condition along growth 

direction (
s

f 0), one writes so called shrink-fit 

condition as 

(1 )f f

f s m

f

v
T T

E
   


                                      (11) 

From which one can write the in plane stress in epilayer as 
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[ ( ) ]
(1 )

ff

m s f

f

E
T

v
     


                                    (12) 

 

On substituting Eq. (12) into Eq. (8) with zz
f 

f 0 and 

into Eq. (9) with  
s 

f0  , the in plane and out of plane 

strain expressions, respectively, become 

 

( )

f

ff f f

xx xx m s f f

f

a a
T T

a
      


          (13) 

2 2
( )

1 1

f f ff f

zz m f s f

f f f

a a v v
T T

a v v
     






      

 
 (14) 

 

Eqs. (13) and (14), respectively, reduce to xx
f xx

f f  

(aII
f af ) /affT for the in plane and zz

f f af  af ) 

/aff for out of plane distortions of lattice constant of thin 

film due to its free linear thermal expansion. 

 

 

4. Strain in Cylindrical Core/Shell Heterostructures 
 

We consider an infinitely long concentric cylindrical 

core/shell semiconductor heterostructure (cross-sectional 

view is shown in Fig. 3) with inner and outer radius a and b 

(a<<b) and is subject to an inner and outer pressure Pi and Po.  

The core region is strained along z-axis due to the lattice 

mismatch
( ) /iz im i m ma a a   

 and shell region is 

unstrained (
/ 0zz zu z    

).  Using Eq. (1) one can then 

write following strain-stress relations in cylindrical core/shell 

heterostructure as [18] 

 

 
 

where  r ,   and z are strain and r ,   and z  stress 

components, E  and  are Young’s modulus and Poisson 

ratio, respectively. 

 Setting  ir i   in Eqs. (15a) and (15b), 

one then finds ir i   and substituting this result into Eq. 

(15c) with 
iz im  one finds following expression for stress 

along z-axis in core region 

 

2iz i ir i im i iv E E T                                           (16) 

 

Substituting ir i i iP     
 and iz

 back into Eqs. 

(15a) and (15b) one finds the following expression for strain 

along radial and tangential direction in core region 

 

 

where iP  is contact pressure at core/shell interface, which is 

to be found from shrink fit condition. 

In shell region there is no displacement along z-

direction, so that strain in this direction is zero (

/ 0mz mzu z     ). Following Ref. 18, one writes

mr iP    and 
m iP   for radial and tangential stresses 

inside shell region when a b  and 0oP  . Stress along z-

axis becomes 

( )mz m mr m m mv E T                                         (18) 

 

where mE and mv  are Young’s modulus and Poisson ratio, 

and m  is linear thermal expansion coefficient of shell, 

respectively.  When a b  and pressure outside nanowire is 

zero ( 0oP  ), Eqs. (16a) and (16b) give 
mr iP    and 

m iP   inside shell region. On substituting Eq. (15c) into 

Eqs. (15a) and (15b), mr and m  then become   

( ) 1
 (1 )m mr m m

mr i m m

m m

a a v
P v T

a E


 

 
               (19) 

( ) 1
(1 )m m m m

m i m m

m m

a a v
P v T

a E





 

 
              (20) 

 

On substituting Eqs. (17) and (20) into Eq. (7) (so 

called the shrink fit condition) one finds the internal pressure 

acting at cylindrical core/shell interface as  

 

2

[(1 ) (1 ) (1 ) ]

(1 2 ) (1 )

i m i im i i m m
i

m i i i m

E E v v T v T
P

E v v E v

      


   
       (21) 

 

On substituting Eq. (21) into Eq. (17) and (19) and (20), 

respectively, one then finds strains in core and shell regions, 

giving the complete solution of the strain problem in 

nanoscale cylindrical core/shell heterostructures when shell 

radius is larger than radius of core ( a b ). 

 

5. Strain in Spherical Core/Shell 
Heterostructures 
 

 

The interface strain in spherical core/shell heterostructures 

will be modeled by using continuum linear elastic theory of 

thermoelastic bodies assuming no defects or plastic 

deformation [18]. There is only radial displacement ur in a 

hollow sphere with inner and outer radius a and b (cross-

sectional wiew is shown in Fig. 3), which is subjected to a 

uniform temperature T and to an inner and outer pressure Pi 
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and Po.  Because of the spherical symmetry, stress has a radial 

component rr r  and two tangential components

t     .  Using Eq. (1) strain-stress relations in 

spherical core and shell regions are  

 

1
 ( 2 )r rr r tv T

E
                                          (22) 

 

1
 [ ( )]t t r tv T

E
                                (23) 

Since strains and stresses are uniform in the spherical core 

region, we can set 

 

rr i rr i iand P                   (24) 

 

where i  and i iP    are, respectively, the hydrostatic 

interface strain and stress acting on core region. iP  is the 

interface contact pressure between the i-core and m-shell 

acting on core region. Using 
rr i        and

rr i iP          in Eqs. (22) and (23) one writes 

the following expression for strain-stress relation in core 

region 

( ) 1 2 1 2
 i i i i i

i i i i i

i i i

a a
T P T

a E E

  
   

  
       (25) 

 

where iE  and i are the Young’s modulus and Poisson’s 

ratio and
i  is linear thermal expansion coefficient of core in 

bulk form. 

In shell region radial and tangential stresses are 

mr iP    and / 2mt m m iP       when a b  and 

0oP  , respectively. On substituting
mr iP   , 

/ 2mt m m iP       into Eqs. (22) and (23) one then 

obtains the radial and tangential strains in shell region as 

 

( ) 1
 ( )m mr m

mr i m i m

m m

a a
P v P T

a E


 


                (26) 

( ) 1
 [(1 ) ]

2

m mt m i
mt m m i m

m m

a a P
v v P T

a E


 


         (27) 

 

where 
mE  and 

m are the Young’s modulus and Poissons ratio 

and m is linear thermal expansion coefficient of shell.  

Combining Eqs. (25) and (27) with the shrink fit condition 

(Eq. (7)) one finds  following expression for pressure at 

core/shell interface  

2 [ ( ) ]

(1 ) 2(1 2 )

i m im i m
i

m i i m

E E T
P

v E v E

   


  
                                        (28) 

Substituting iP  into Eq. (25) and into Eqs. (26) and (27) one 

then finds expression for strain in core and shell regions 

respectively, giving the complete solution of the strain 

problem in nanoscale spherical core/shell heterostructures 

when shell radius is larger than radius of core ( a b ). 

 6. Results and Discussion 

In this section, we will present results of calculations results 

for interface strain effects in two, one, and zero dimensional 

pseudomorphic semiconductor heterostructures. We will first 

discuss results of our calculations on anisotropy of thermal 

expansion of GaAs thin film grown on Si (001) substrate.  We 

will then show that temperature dependent interface strain 

effects on core band gap of CdSe/Cd (Zn)S and ZnSe/Cd 

(Zn)S heterostructure core/shell quantum dots. 

6.1 Anisotropy of Thermal Expansion of GaAs 
on Si(001)  
 

The difference between lattice parameters of GaAs and Si is 

4.1% at 300 K.  X-ray diffraction measurements [19] has 

shown that epitaxial GaAs thin films on vicinal Si (001) 

substrate exhibit tetragonal distortion at 300 K.  The in plane 

thermal expansion of GaAs thin film follows the thermal 

expansion of Si (001) substrate. Meanwhile, the out of plane 

thermal expansion of GaAs thin film exceeds bulk value. The 

in and out of plane lattice constants as well as the bulk GaAs 

lattice constant all converge at about 490 0C (average value 

of initial growth temperature.) 

Strain effect on linear thermal expansion of GaAs 

heterolayer grown on Si (001) substrate are obtained by 

defining linear thermal expansion coefficients of epilayer 

parallel and perpendicular to the growth direction as ( )T  

and ( )T
. According to Eqs. (13) and (14) one then writes 

f f f f

xx yy T       and f f f

zz T     , respectively, which 

gives 
( )

( ) ( ) [ ( ) ( )] ( )f m
s f f

T
T T T T

T


                                 (29) 

2 2( )
( ) ( ) [ ( ) ( )] ( )

1 1

f ff m
s f f

f f

v vT
T T T T

v T v


        

 

    (30) 

which show that in pseudomorphic planar heteroepitaxy, 

lattice mismatch strain also contributes to in- and out- of 

plane linear thermal expansion coefficients. Using Eqs. (13) 

and (14) one can write the following expressions for the 
epilayer lattice constant distorted in plane and out of plane 

(1 ) (1 ) [1 ( ) [ ( ) ( )] ( ) ]f f

f f f m s f fa a a T a T T T T T T               (31) 



Journal of Materials and Electronic Devices 1 (2019) 24-33 

29 

 

 

2
(1 ) (1 ) [1 [ ( ) ( ( ) ( )) ] ( ) ]

1

ff f

f f f m s f f

f

v
a a a T a T T T T T T

v
               


 

(32) 

 

Temperature dependent in- and out- of plane linear thermal 

expansion coefficients ( ( )T and ( )T
) and in-and out- of 

plane strain distorted lattice constants (
fa and

fa
) of GaAs 

epilayer on Si (001) are calculated from Eqs. (31) and (32), 

respectively. Elastic stiffness parameters, 
11 11.8fC   and 

12 5.30fC  (in 10 210 /dyn cm ) [20] are used in calculations. 

The bulk lattice constants and linear expansion coefficients 

for GaAs and Si fitted to following expressions [21]  

 
2 3

0( ) (1 )a T a A BT CT DT                               (33) 

6 1 21
( ) /10 2 3

a
T K B CT DT

a T
   

   


                    (34) 

where a0=0.565325 (0.543108) nm is bulk lattice constant of 

GaAs (Si) at 300 K. Constants A, B, C, and D are empirical 

fitting parameters [21]: A/10-2 = -0.147 (-0.071), B/10-6 K-1 = 

4.239 (1.887), C/10-9 K-2 = 2.916 (1.934),  and D/10-12 K-3 = 

-0.936 (-0.4544) for bulk GaAs (Si). 

Figure 4a compares the temperature variation of in- 

and out- of plane linear thermal expansion coefficients. 

Meanwhile, Fig. 4b compares the temperature variation of in- 

and out- of plane and lattice constant of GaAs epilayer 

relative to its bulk value and to that of Si (001) substrate, 

respectively. The in plane and out of plane lattice constants 

as well as the bulk GaAs lattice constant all nearly converge 

at about 490 0C (average value of initial growth temperature.) 

Out of plane linear thermal expansion coefficient ( ( )f T ) of 

GaAs epilayer is equivalent to that of Si (001) substrate (

( ) ( )s

sT T  ), but smaller than that of bulk GaAs ( ( )f T ) 

over the entire temperature range. However, out of plane 

thermal expansion coefficient ( )f T
 of GaAs epilayer 

exceeds ( )f T  by Poisson ratio.  Similar observation is also 

true for the corresponding in- and out- of plane distortions of 

GaAs lattice constant (Fig. 4b) over the entire temperature 

range. Results shown in Fig. 4a are in excellent agreement 

with experimental findings of Lucas et al [19], who used high 

resolution x-ray scattering technique to measure the 

anisotropy in linear expansion coefficient of GaAs grown on 

Si (001) substrate. 

 

Figure 4. Predicted temperature variation of in plane and out 

of plane linear thermal expansion coefficients (a) and lattice 

constants (b) of GaAs on Si (001). 

Table 1. compares the model calculations with experimental 

data of Lucas et al [19] for linear thermal expansion 

coefficients and lattice constants of GaAs and Si (001) at 300 

K.   

 

 

Using Eq. (12) one can determine the magnitude of in plane 

stress that epilayer is subject to during growth.  Figure 5 

shows the temperature variation of in plane stress in GaAs on 

Si (001) substrate. GaAs is subject to compressive in plane 

stress over entire temperature, but slope begins to change at 

around 900 K. This suggests that the proposed thermoelastic 

strain model could be used as part of a predictive processing 

Table 1. Comparison of predicted and measured in plane 

and out of plane linear thermal expansion coefficient and 

lattice constant of GaAs/Si(001) 

Paramete

r 

GaAs 

(predicte

d) 

GaAs 

(measure

d) 

Si 

(Predicte

d) 

Si 

(measure

d) 
6 1(10 )K  

  7.9689 8.40 3.5095 3.51 

6 1(10 )K  

 
3.5094 3.46 3.5095 3.46 

( )a nm  
0.56667 0.56602 0.5431 - 

( )a nm
 

0.56592 0.56483 0.5431 - 
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tool for planar heteroepitaxy to provide a pre-growth 

conditions before the actual growth process takes place. 

 

 
 

Figure 5. Predicted temperature variation of in plane 

stress in GaAs on Si (001) substrate.  

 

 

6.2 Strain Effects on Core Bandgap in 
Core/Shell QDs 
 

Second application of the proposed thermoelastic strain 

model is about predicting the interface strain shifts in band 

gap of type I and type II spherical heterostructure core/shell 

quantum dots.  In a nanoscale Type I heterostructure, an 

electron-hole pair excited near interface tend to localize in 

core. Therefore, the exciton energy in core/shell 

nanostructures with Type-I band alignment is result of direct 

exciton transition inside core region. In a nanoscale Type II 

heterostructure, the shell conduction band edge is located in 

core bandgap leading to a local separation of the hole and 

electron in core and shell. Therefore, holes (electrons) are 

confined to core (shell) and electrons (holes) are confined to 

shell (core), which are result of indirect exciton transition. 

The corresponding locally indirect band gap is equal to 
id

g gA cE E E   in hole-electron and id

g g A vE E E   

in electron-hole confinement, respectively. 

Interface strain effects on the energy band structure 

of constituents of type I and type II spherical heterostructure 

core/shell quantum dots can be easily determined by using the 

so called the statistical thermodynamic model of 

semiconductors [22], in which one expresses the conduction 

and valence band edges as a function of pressure at any 

temperature as: 

 
2 '

0 3

2

(1 )
( , ) (1 ln ) ( )

2 3

g

g g P

a P B
E T P E C T T P P

B B B


              (35) 

where 
gE  is the bulk band gap at 0 K and ( / )g ga B E P   

is the deformation potential. 
iB  is bulk modulus with its 

pressure derivative ' /i iB B P   . 0 (1 ln )PC T T   is the lattice 

vibration contribution with temperature increase. The third 

term is the sum of the internal thermal pressure (i.e., volume 

expansion) and external pressure (i.e., due to lattice 

mismatch). Using Eq. (33) one can define hydrostatic 

pressure acting on electronic properties of core region as 

2 (1 2 )[ ( ) ]
( ) 3 ( ) 3 3

(1 ) 2 (1 2 )

m i im m i
i i irr i i i i i i i

i m m i

E T
P B B T B T B

E E
 

   
    

 

  
        

  
 

(36) 

 
0

PC  is the standard state heat capacity of reaction for 

formation of electron-hole pair, obtained by fitting core band 

gap calculated from Eq. (37) at constant external pressure 

(without strain i  due to lattice mismatch) to measured 

bandgap [22], usually fitted to empirical Varshni expression 

[23]: ( ) (0) / (1 )gi giE T E A BT   , where A and B are 

fitting constants for bulk semiconductor. 

Substituting iP  from Eq. (36) into Eq. (35) we can 

incorporate interface strain into conventional isotropic two 

band effective mass approximation [24] to determine the band 

gap of spherical bare and type I heterostructure core/shell 

QDs, given by the following equations  
 

2 2 2 4

* 2 2 * 2

2 3.572 0.124
( ) ( )ni bi bi

g i g g i

cv cv

e e
E E E

m d d m


  

  

            (37) 

 

where 
bi

gE  is bandgap in bulk form at T=0 K and 

* * * * */ ( )cv e h e hm m m m m   is reduced effective mass of electron 

hole pair. 
*

em  and 
*

hm , are effective masses of electrons and 

holes and   is optical dielectric constant of core in bulk 

form. The third term represents confinement energy with a 

1/d2 dependence. The fourth term represents Coulomb 

interaction energy with a 1/d dependence. Finally, last term is 

the Rydberg correlation energy, which is negligible when

is large. ( , )bc

gi iE T   is the shift in core band gap due to 

interface strain at any temperature and hydrostatic pressure iP

, given by the following expression 

 
2 '

0 3

2

(1 )
( , ) (1 ln ) ( ),   

2 3

gibc i i
gi i iP i i

i i

a P B
E T C T T P P

B B B
 


          (38) 

 

where 
b

gE  is bandgap of core region in bulk form at T=0K. 

In spherical core/shell QDs with Type II 

heterointerface band alignment, strain effects on core 

bandgap and valence and conduction band offsets can be 

calculated by using isotropic two band effective mass 

approximation according to following expression 

 

 
2 2 2 4

* 2 2 * 2

2 3.572 0.124
( ) ( , ) ( )ni bi bi

g i g g i v

cv cv

e e
E E E T E

m d d m


   

  

      (39) 
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2 2 2 4

* 2 2 * 2

2 3.572 0.124
( ) ( , ) ( )ni bm bm

g i g g m c

cv cv

e e
E E E T E

m d d m


   

  

     
 (40) 

 

where bi

gE  and bm

gE  are, respectively, core and shell bandgaps 

in bulk form at T=0K, with shifts  ( , )bi

g iE T   and ( , )bm

g iE T   

due to strain at any temperature. Shift in band gap shell 

constituent of core/shell QD due to interface strain at any 

temperature and hydrostatic pressure
mP  is given by the 

following expression  

2 '
0 3

2

(1 )
( , ) (1 ln ) ( )  

2 3

gmbm m m
g m mP m m

m m m

a P B
E T C T T P P

B B B
 


      (41) 

where gma is bandgap deformation potential, and
mB is bulk 

modulus (with its pressure derivative
'

mB ) of shell 

semiconductor in bulk form, respectively. Finally, 

( , ) ( )m mr m mP T B          is hydrostatic pressure 

acting on shell side, given as 

 
3

3 3

6 [(1 2 ) ][ ( ) ]
3  

[ (1 ) 2 (1 2 )] 2[(1 2 ) (1 2 ) ]

m i m im i m
m m m

i m m i m i i m

B E v a T
P B T

E v E v b v E v E a

  


  
  

      

 

(42) 

 

In Eqs. (39) and (40), ( )vE   and ( )cE  are strain 

dependent valence and conduction band offsets, respectively. 

Hydrostatic strain effects on valence band offsets is obtained 

by taking difference between strain dependent valence band 

widths of shell and core constituents, screened by their optical 

dielectric constant in bulk form, and given as [25] 

 

( ) ( ) / ( ) /v mv m m iv i iE E E                               (43) 

 

where ( )iv iE  and ( )mv mE  are strain dependent valence band 

edges and i  and m  are optical dielectric constants of of 

core and shell constituent semiconductors, respectively. 

Valence band widths of bulk semiconductors are determined 

by using density functional theory with modified Becke–

Johnson exchange potential with local density approximation 

(mBJLDA-DFT) model [25] and hydrostatic interface strain 

shift is done using Eq. (23). Likewise, hydrostatic strain 

effects on conduction band offset is obtained by adding 
(subtracting)  valence band offset to band gap difference, 

respectively, given as 

 

( ) ( ) ( )c g vE E E                                              (44) 

 

where ( ) ( ) ( )c g vE E E      and 

( ) ( ) ( )c g vE E E       are conduction band offsets in 

Type I and Type II heterostructures, respectively, with strain 

dependent shell and core band gap difference 

( ) ( ) ( )m i

g g m g iE E E     . The interface strain effects on 

band gap of bare CdSe and ZnSe core and heterostructure 

core/shell CdSe/ZnS, CdSe/CdS, ZnSe/ZnS and ZnSe/CdS 

quantum dots are calculated by using parameters given in 

Table 2 for bulk CdSe, ZnSe, CdS and ZnS [21]. 

 

 

Figure 6 compares the contribution of the effects of interface 

strain and lattice vibration (electron-phonon interactions) to 

the total band gap shift in bare CdSe and ZnSe core QDs and 

total shift in the core band gaps of CdSe/CdS (CdSe/ZnS) and 

ZnSe/CdS (ZnSe/ZnS) core/shell QDs as a function of 

temperature, respectively.  As shown in Fig. 6, interface strain 

contribution to core band gap shift is positive and decreasing 

magnitude, while lattice vibration contribution is negative 

and decreasing in magnitude, with temperature increase both 

CdSe and ZnSe based core/shell QDs. Strain contribution to 

core bandgap increase is larger (about 0.30 eV) when lattice 

mismatch is large (e.g., in CdSe/ZnS and ZnSe/ZnS) and 

small (less than 0.10 eV) when lattice mismatch is small (e.g., 

in CdSe/CdS and ZnSe/CdS), respectively. 

 

 

 

Table 2. Properties of some II-VI compounds used in 

model calculations. 

Parameter/Mate

rial 
CdSe ZnSe CdS ZnS 

a(nm) 0.607 0.5668 0.581 0.541 

Eg (eV) 1.75 2.70 2.50 3.68 

C11 (1010 

dyn/cm2) 
7.46 8.10 7.70 1.01 

C12 (1010 

dyn/cm2) 
4.61 4.88 5.39 0.64 

 (10-6 K-1) 3.0 7.60 3.0 6.9 

A -44.09 10  -45 10  -43.45 10  -45.48 10  

B 187 218 208 282 



Journal of Materials and Electronic Devices 1 (2019) 24-33 

32 

 

 

Figure 5. The effects of interface strain and thermal vibration 

on band gaps of CdSe core in CdSe/CdS and CdSe/ZnS and 

ZnSe/ZnS and ZnSe/CdS QDs as a function of temperature. 

 

Figure 7 compares the effect of carrier confinement to CdSe 

core band gap shift in CdSe/ZnS and CdSe/CdS QDs and 

ZnSe core band gap shift of ZnSe/ZnS and ZnSe/CdS QDs 

QDs at 300 K, respectively. In both cases, carrier confinement 

energy contribution to shift in core bandgap is equal to 

combination of a 1/d2  and a 1/d dependence. 

 

Figure 7. The effects of carrier confinement to CdSe core 

band gap shift in CdSe/ZnS and CdSe/CdS QDs and ZnSe 

core band gap shift in ZnSe/ZnS and ZnSe/CdS QDs at 300 

K. 

Combining the contributions of interface strain and lattice 

vibration effects to shifts in core bandgap, using the material 

parameters listed in Table 2, the core band gaps of bare CdSe 

and ZnSe core QDs and core band gaps of CdSe/ZnS, 

CdSe/CdS, ZnSe/ZnS and ZnSe/CdS core/shell QDs are 

calculated as a function of temperature. Results shown in Fig. 

8 indicate that, since lattice vibration and confinement effects 

are same for both core and core/shell QDs, the main 

contribution to the increase in core band gaps of core/shell 

QDs is due to interface strain as a function of temperature. 

The results are generally in good agreement with 

experimental findings [26-28].  

 

 
 

Figure 8. Comparison of temperature variation of core band 

gaps of bare CdSe core QD with those of CdSe/ZnS , 

CdSe/CdS, ZnSe/ZnS, and ZnSe/CdS core/shell QDS. 

 

2. Conclusion  
We discussed the effects of composition and interface strain 

due to lattice mismatch and thermal expansion coefficients of 

binary core and ternary shell on the electronic properties of 

constituents of CdSe/Cd(Zn)S and ZnSe/Cd(Zn)S 

heterostructure core/shell quantum dots as a function of 

temperature.  It is shown that the core band gap is mainly 

influenced by the interface strain in heterostructure core/shell 

quantum dots. Consistency between theoretical predictions 

and experimental measurements implies that this model could 

be expected to be a general approach to analyze electrical and 

optical properties of nanoscale semiconductor systems. 
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